
127

5. Investigations into Simalytic Modeling

Section 4.2 Construction of a Simalytic Model on page 100 presented a detailed

analysis of a two server model example. This section expands the idea of a Simalytic

Model and describes the results of models with additional servers. The presentation is

similar to section 4.2.5 Implementation Example on page 115, but without the detailed

business discussion. For each of the following examples, an abbreviated description of the

model creation process is shown. In these examples, the nodes are shown simply as serv-

ers S1 through S3, S4 or S8, as appropriate for each example. The transaction workloads

are represented as T1 and T2, with T1 being the workload of interest4. The T2 workload

needs to be included only to the extent it impacts the T1 workload and to understand what

impact increasing the arrival rate of T1 has on T2 response times. The arrival rate of T2 is

kept constant at 0.1 arrivals per second. Only the arrival rate of T1 is changed to repre-

sent growth in that workload. To keep this example simple, it is also assumed that all of

the transactions that execute on a server use the same resources. This means that there is

no difference on S1 between T1 transactions that route to S2 and those that don't. It also

means there is no difference between the transactions that execute on S2 (i.e. a T1 trans-

action routed to S2 consumes the same resources on S2 as a T2 transaction initially

4 The notation used to identify the transaction workloads in this chapter differs

slightly from that used in the research results and models. The transaction workloads are
identified as T1 and T2 so the reader can more easily distinguish them from the servers S1
and S2. However, the original research results identify these workloads as S1 transactions
and S2 transactions because they are the transactions initially sent to the S1 and S2 serv-
ers, respectively. Therefore, throughout this chapter, the appendices and the raw data, the
terms “T1”, “T1 transactions” and “S1 transactions” are interchangeable and the terms
“T2”, “T2 transactions” and “S2 transactions” are interchangeable.

128

started on S2). Because this is a hypothetical client/server environment, there are no ac-

tual measurements. Therefore, the results of a pure simulation model of the environment

are used to represent these measurements.

When designing the configurations to use for the examples, it quickly became ap-

parent that there truly are an infinite number of possible combinations of workloads, serv-

ers, routings and static workload arrival rates (the constant value used for the arrival rate

of all workloads other than T1, the workload of interest). Unfortunately, the results up to

this point in the research were very consistent and did not show any anomalies to indicate

any preferred configurations to investigate. Therefore, the configurations (the server

service times, the routing percentages and the application topologies) were selected gen-

erally at random with some attempt to provide results that could be compared to the ear-

lier MathCAD results. The simulation models were constructed first and then adjusted to

provide a well formed response time curve within the arrival rate range of 0.01 to 5.0 arri-

vals per second with an objective of having the model near saturation at 5.0 arrivals per

second. Once the desired configuration was established for each of these three examples,

the Simalytic Models were constructed. In no case were any of the simulation models

modified once work on the Simalytic Model for that example had begun.

The queuing theory models used for the servers are the same for all three models

and are detailed in section 7.2 Appendix B: Queuing Theory Models on page 164. Se-

lected results from multiple runs of this model are shown in Table 10 OpenQN Response

Times on page 167. The servers used in each of the models are those discussed in section

7.7 Appendix G: Tool Baseline Comparison Results on page 215 and have service times

of 0.1, 0.5, 1.0 and 1.5 seconds. The correlation between the OpenQN models and the

129

Simul8 models for these servers is quite good and is shown in Figure 62 Multi-device

Server Baseline Chart on page 216.

The results of both the simulation models and the Simalytic Models for the three

server, the four server and the eight server configurations are shown in Table 6 Three

Server Example Response Time Results on page 134, Table 7 Four Server Example

Response Time Results on page 138 and Table 8 Eight Server Example Response Time

Results on page 142, respectively. Each data point is the average of ten trials for each ar-

rival rate to reduce the impact of arrival distributions. The arrival rate refers to the arrival

rate for T1. The arrival rate for T2 is kept at a constant value because it is not the work-

load of interest. Each trial was for 3600 simulation seconds (one simulation hour) with a

100 second warm-up period (300 seconds for the eight server model because of the in-

creased complexity). The Simalytic Function was created using Microsoft’s Visual Basic.

For these models, it is a very simple function that calculates the cumulative average of the

interarrival times for each workload and looks up the corresponding response time in a

table. The Simalytic results track the simulation results in all three cases. The slight under

predicting is consistent with the simple implementation of the Simalytic Function as dis-

cussed in 3.5.3 Validation of the Mathematical Foundation on page 86. It is also dis-

cussed in section 4.2.5.5 Simalytic Model Example on page 121 and in Figure 31

Simalytic Function Comparison on page 123.

The Simalytic Models for these examples are shown in section 7.3 Appendix C:

Simalytic Models, starting on page 168, as Figure 56 on page 176, Figure 57 on page

176 and Figure 58 on page 177. The same Simalytic Function was used for all three ex-

amples and is shown in Figure 55 Visual Basic Code for Simalytic Function on page 170.

130

The replication factor for each server is set to 10,000 to avoid all queuing. Statistics were

collected on the queue length for each server in each Simalytic Model to insure no addi-

tional queuing was introduced. The value of 10,000 was used after an occasional maxi-

mum queue length of one was found. All Simalytic Models in the section show a

maximum queue length of zero for every server with this replication value.

Two methods were used to verify that these models are accurate representations of

the applications. The average response times (over ten trials) for each model at the lowest

arrival rate were compared to the calculated service times for that model and to the same

results from the simulation models. The calculated service times, shown in Table 5, de-

rived from the sum of the product of

the service time and percentage of vis-

iting transactions for each server. For

example, the service time calculated for

T1 in the three server model would be 100%*0.1+60%*1.0+(60%*70%)*1.5=1.33 (refer

to Figure 32 Three Server Configuration on page 132 for the routing information). The

simulation results are shown in Table 6, Table 7 and Table 8. The Simalytic Model results

are very close to the expected values in both comparisons (slight variations are due to the

differences between the theoretical and actual routing percentages at such very low arrival

rates), which shows these models are accurate representations of the applications.

Each of the following sections, 5.1 Three Server Example, 5.2 Four Server Exam-

ple and 5.3 Eight Server Example, are structured in the same way as section 4.2.5.1

Example Process Implementation on page 117. In order to make each section readable on

its own, much of the supporting text is repeated in each section. The significant differ-

3 Server
Model

4 Server
Model

8 Server
Model

T1 Transactions 1.33 1.55 2.57
T2 Transactions 2.50 2.25 3.63

Table 5 Calculated Service Times

131

ences are the references to the tables and figures and the analysis in the calibration step of

the Simalytic Model phase. Once the reader is comfortable with the structure and flow of

a section, the other sections can be reviewed quickly by referring just to the tables and fig-

ures and analysis.

132

5.1 Three Server Example

This three server example represents a simple application where all three servers

are used by the T1 workload and only two are used by the T2 workload.

5.1.1 Three Server Example Workload Analysis

Identify: For this example, there are

two transaction types: T1 and T2.

Document: Refer to Figure 32 for

complete information as to the

topology of both workloads. This

figure shows the routing of trans-

actions out of each server as the

percentage of the transactions

that entered the server. The percentage for each transaction type will be 100%. A

single arrow out of a server represents 100% of all transaction types.

Measure: Refer to the simulation results in Table 6 Three Server Example Response

Time Results on page 134.

Correlate: The workload correlation is assumed.

5.1.2 Three Server Example Node Models

Build: The service times for the OpenQN model of each node (server) are shown in

Table 9 OpenQN Device Service Times on page 166 (the server names reflect the

service time for the server). This model uses servers S1, S2 and S3.

Calibrate: The model of each server is assumed to be calibrated for this example.

S1
0.1

60% T1

T1
Transaction

Arrivals

Departures

T2
Transaction

Arrivals

S2
1.0

S3
1.5

70% T1
100% T2

30% T1

40% T1

Figure 32 Three Server Configuration

133

Run: The OpenQN models were run for each server.

Create: Partial results of the OpenQN model of each server are shown in Table 10

OpenQN Response Times on page 167.

5.1.3 Three Server Example Simulation Model

Build: The overall simulation model was built using Simul8 and is shown in Figure 47

Three Server Simulation Model on page 161. The service times are the same as those

used in the OpenQN model shown in Table 9 OpenQN Device Service Times on page

166.

Set: This step was skipped for this example because it sets the simulation model service

times for the next step, which is not required.

Calibrate: This step normally compares the simulation model to actual measurement re-

sponse times. It is not required for this example because the simulation results are

being used as the measurement data.

5.1.4 Three Server Example Simalytic Model

Create: The Simalytic Function shown in Figure 55 Visual Basic Code for Simalytic

Function on page 170 was used for this example.

134

Replace: Replace the static service times. Table 6 Three Server Example Response Time

Results shows the results of the model trials after the Simalytic Function was imple-

mented. Figure 56 Three Server Simalytic Model on page 176 shows the Simalytic

Model used for this example.

Calibrate: The results of the above model are compared to the pure simulation model

results to calibrate the model as shown in Figure 33 Three Server Comparison. The

lines T1 Delta % and T2 Delta % show how well the two modeling techniques correlate.

The scale on the right side of the chart shows the objective of ±10% and all of the data

points (except for the last one, 5.0 arrivals per second, which is close to model satura-

tion) for both workloads are within the objective. The effects of the particular

smoothing function implemented in the Simalytic Function are seen in the increased

delta as the arrival rate increases. Figure 31 Simalytic Function Comparison on page

123 shows the impact of the function on the results correlation.

T1
Arrival Rate

Simulation
T1

Transactions

Simulation
T2

Transactions

Simalytic
T1

Transactions

Simalytic
T2

Transactions

T1
Delta

%

T2
Delta

%
0.01 1.31 2.58 1.37 2.58 4.1% -0.2%
0.10 1.37 2.64 1.38 2.59 0.9% -1.8%
0.20 1.41 2.65 1.38 2.60 -2.3% -1.9%
0.50 1.50 2.82 1.45 2.75 -3.4% -2.6%
1.00 1.64 3.12 1.57 3.01 -4.6% -3.6%
2.00 2.04 3.98 1.98 3.82 -2.9% -4.0%
3.33 3.24 6.49 3.10 6.11 -4.5% -5.8%
3.70 4.02 8.06 3.79 7.56 -5.7% -6.2%
4.00 5.21 10.70 4.77 9.61 -8.5% -10.2%
5.00 88.09 199.72 45.42 91.43 -48.4% -54.2%

Table 6 Three Server Example Response Time Results

135

3 Server Response Times Comparison Chart

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0.01 0.10 0.20 0.50 1.00 2.00 3.33 3.70 4.00 5.00

Arrival Rate

R
es

po
ns

e
Ti

m
es

-10.0%

-8.0%

-6.0%

-4.0%

-2.0%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

Simulation T1 Transactions Simulation T2 Transactions
Simalytic T1 Transactions Simalytic T2 Transactions
Response Time Objective T2 Delta %
T1 Delta %

Figure 33 Three Server Comparison

136

5.2 Four Server Example

This four server example represents an application where all four servers are used

by the T1 workload and three servers are used by the T2 workload.

5.2.1 Four Server Example Workload Analysis

Identify: For this example, there are two transaction types: T1 and T2.

Document: Refer to Figure 34

for complete information as to

the topology of both work-

loads. This figure shows the

routing of transactions out of

each server as the percentage

of the transactions that entered

the server. The percentage for

each transaction type will be 100%. A single arrow out of a server represents 100%

of all transaction types.

Measure: Refer to the simulation results in Table 7 Four Server Example Response Time

Results on page 138.

Correlate: The workload correlation is assumed.

5.2.2 Four Server Example Node Models

Build: The service times for the OpenQN model of each node (server) are shown in

Table 9 OpenQN Device Service Times on page 166. This model uses servers S1, S2,

S3 and S4.

S1
0.1

50% T1

T1
Transaction

Arrivals Departures

T2
Transaction

Arrivals

S2
1.0

S3
0.5

S4
1.5

50% T1
75% T2

50% T1
25% T2

30% T1

20% T1

Figure 34 Four Server Configuration

137

Calibrate: The model of each server is assumed to be calibrated for this example.

Run: The OpenQN models were run for each server.

Create: Partial results of the OpenQN model of each server are shown in Table 10

OpenQN Response Times on page 167.

5.2.3 Four Server Example Simulation Model

Build: The overall simulation model was built using Simul8 and is shown in Figure 48

Four Server Simulation Model on page 162. The service times are the same as those

used in the OpenQN model shown in Table 9 OpenQN Device Service Times on page

166.

Set: This step was skipped for this example because it sets the simulation model service

times for the next step, which is not required.

Calibrate: This step normally compares the simulation model to actual measurement re-

sponse times. It is not required for this example because the simulation results are

being used as the measurement data.

5.2.4 Four Server Example Simalytic Model

Create: The Simalytic Function shown in Figure 55 Visual Basic Code for Simalytic

Function on page 170 was used for this example.

138

Replace: Replace the static service times. Table 7 Four Server Example Response Time

Results shows the results of the model trials after the Simalytic Function was imple-

mented. Figure 57 Four Server Simalytic Model on page 176 shows the Simalytic

Model used for this example.

Calibrate: The results of the above model are compared to the pure simulation model

results to calibrate the model as shown in Figure 35 Four Server Comparison. The

lines T1 Delta % and T2 Delta % show how well the two modeling techniques correlate.

The scale on the right side of the chart shows a wider scale than the objective of ±10%

because the last three data points are outside the objective. Except for the last data

point (5.0 arrivals per second, which is close to model saturation) all of the data points

for both workloads are either very close or within the objective. The effects of the

particular smoothing function implemented in the Simalytic Function are seen in the

increased delta as the arrival rate increases. Figure 31 Simalytic Function Compari-

son on page 123 shows the impact of the function on the results correlation.

T1
Arrival Rate

Simulation
T1

Transactions

Simulation
T2

Transactions

Simalytic
T1

Transactions

Simalytic
T2

Transactions

T1
Delta

%

T2
Delta

%
0.01 1.64 2.31 1.61 2.29 -1.9% -0.5%
0.10 1.64 2.37 1.58 2.32 -3.4% -2.0%
0.20 1.66 2.39 1.59 2.32 -4.3% -3.0%
0.50 1.72 2.54 1.65 2.44 -3.8% -4.0%
1.00 1.85 2.73 1.79 2.67 -3.4% -2.3%
2.00 2.26 3.44 2.16 3.26 -4.5% -5.2%
3.33 3.47 5.53 3.17 5.02 -8.7% -9.3%
3.70 4.46 7.12 3.96 6.31 -11.4% -11.4%
4.00 6.48 10.63 5.45 9.00 -16.0% -15.4%
5.00 120.47 203.58 26.15 43.43 -78.3% -78.7%

Table 7 Four Server Example Response Time Results

139

4 Server Response Times Comparison Chart

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0.01 0.10 0.20 0.50 1.00 2.00 3.33 3.70 4.00 5.00

Arrival Rate

R
es

po
ns

e
Ti

m
es

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

D
el

ta
 %

Simulation T1 Transactions Simulation T2 Transactions
Simalytic T1 Transactions Simalytic T2 Transactions
Response Time Objective T2 Delta %
T1 Delta %

Figure 35 Four Server Comparison

140

5.3 Eight Server Example

This eight server example represents a complex application where transactions visit

servers both routed and in series. Seven of the eight servers are used by the T1 workload

and three servers are used by the T2 workload.

5.3.1 Eight Server Example Workload Analysis

Identify: For this

example, there

are two transac-

tion types: T1

and T2.

Document: Refer

to Figure 36 for

complete infor-

mation as to the

topology of

both workloads. This figure shows the routing of transactions out of each server as

the percentage of the transactions that entered the server. The percentage for each

transaction type will be 100%. A single arrow out of a server represents 100% of all

transaction types.

Measure: Refer to the simulation results in Table 8 Eight Server Example Response

Time Results on page 142

Correlate: The workload correlation is assumed.

S1
0.1

S2
1.5

45% T1

T1
Transaction

Arrivals

Departures

T2
Transaction

Arrivals

S3
0.5

S4
1.0

S6
1.0

S8
1.5

S5
0.5

S7
0.1

25% T2

100% T1
75% T2

20% T1

10% T1

100% T125% T1
100% T2

Figure 36 Eight Server Configuration

141

5.3.2 Eight Server Example Node Models

Build: The service times for the OpenQN model of each node (server) are shown in

Table 9 OpenQN Device Service Times on page 166. This model uses servers S1, S2,

S3, S4, S5, S6, S7 and S8. In order to keep the OpenQN modeling data at a manage-

able level, four of these servers are assumed to have the same service times and to

generate the same response time results as four other servers. Therefore, in this ex-

ample, there are two servers with a service time of 0.1 seconds (S1 and S7), two

servers with a service time of 0.5 seconds (S3 and S5), two servers with a service

time of 1.0 seconds (S4 and S6), and two servers with a service time of 1.5 seconds

(S2 and S8). This was done to keep this example simple enough to present in a rea-

sonable manner. There is no indication that this simplification caused any bias in the

model, either positive or negative. Additional benefits of this simplification are re-

duced construction effort of the simulation and Simalytic models as well as consistency

with the earlier MathCAD results as discussed in section 7.7 Appendix G: Tool Base-

line Comparison Results on page 215.

Calibrate: The model of each server is assumed to be calibrated for this example.

Run: The OpenQN models were run for each server.

Create: Partial results of the OpenQN model of each server are shown in Table 10

OpenQN Response Times on page 167.

5.3.3 Eight Server Example Simulation Model

Build: The overall simulation model was built using Simul8 and is shown in Figure 49

Eight Server Simulation Model on page 163. The service times are the same as those

142

used on the OpenQN model shown in Table 9 OpenQN Device Service Times on page

166.

Set: This step was skipped for this example because it sets the simulation model service

times for the next step, which is not required.

Calibrate: This step normally compares the simulation model to actual measurement re-

sponse times. It is not required for this example because the simulation results are

being used as the measurement data.

5.3.4 Eight Server Example Simalytic Model

Create: The Simalytic Function shown in Figure 55 Visual Basic Code for Simalytic

Function on page 170 was used for this example.

Replace: Replace the static service times. Table 8 Eight Server Example Response Time

Results shows the results of the model trials after the Simalytic Function was imple-

mented. Figure 58 Eight Server Simalytic Model on page 177 shows the Simalytic

Model used for this example.

T1
Arrival

Rate

Simulation T1
Transactions

Simulation T2
Transactions

Simalytic
T1

Transactions

Simalytic
T2

Transactions

T1 Delta
%

T2 Delta
%

0.01 2.78 3.71 2.55 3.72 -8.0% 0.1%
0.10 2.66 3.78 2.64 3.73 -0.7% -1.4%
0.20 2.71 3.83 2.64 3.75 -2.4% -2.1%
0.50 2.83 4.01 2.73 3.94 -3.4% -1.8%
1.00 3.10 4.41 3.00 4.32 -3.1% -2.2%
2.00 3.87 5.44 3.63 5.24 -6.2% -3.6%
3.33 6.37 9.26 5.92 8.63 -7.1% -6.8%
3.70 8.38 12.44 7.40 11.07 -11.8% -11.0%
4.00 12.90 19.78 11.20 17.30 -13.2% -12.6%
5.00 184.20 346.42 55.12 86.37 -70.1% -75.1%

Table 8 Eight Server Example Response Time Results

143

Calibrate: The results of the above model are compared to the pure simulation model

results to calibrate the model as shown in Figure 37 Eight Server Comparison. The

lines T1 Delta % and T2 Delta % show how well the two modeling techniques correlate.

The scale on the right side of the chart shows a wider scale than the objective of ±10%

because the last three data points are outside the objective. Except for the last data

point (5.0 arrivals per second, which is close to model saturation) all of the data points

for both workloads are either very close or within the objective. The effects of the

particular smoothing function implemented in the Simalytic Function are seen in the

increased delta as the arrival rate increases. Figure 31 Simalytic Function Compari-

son on page 123 shows the impact of the function on the results correlation.

144

8 Server Response Times Comparison Chart

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

0.01 0.10 0.20 0.50 1.00 2.00 3.33 3.70 4.00 5.00

Arrival Rate

R
es

po
ns

e
Ti

m
es

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

Simulation T1 Transactions Simulation T2 Transactions
Simalytic T1 Transactions Simalytic T2 Transactions
Response Time Objective T2 Delta %
T1 Delta %

Figure 37 Eight Server Comparison

145

5.4 Multiple-Server Examples Summary

This section has presented three additional example models of applications with

arbitrary topologies. It has shown how the results of the Simalytic Models track the re-

sults of the simulation models with the same degree of correlation as prior examples. The

Simalytic Models are slightly under predicting, as discussed in earlier sections, because of

the simple Simalytic Function used. Even with this under prediction, it is still appropriate

to use the Simalytic Models because they are either within, or very close to, the objective

of ±10% of the simulation results. When the Simalytic Model results are adjusted by the

factor of 1.05 (the same as used in section 3.5.3 Validation of the Mathematical Founda-

tion on page 86), all of the data points are within the objective except for 4.0 arrivals per

second in the four server example (which is very close at -11.8% for T1 and -11.1% for

T2) and the saturation point (5.0 arrivals per second) in all three examples.

All three of these examples provide additional verification of the results of Sima-

lytic Models as compared to simulation models of the same applications. The focus of this

verification is that the results are consistently precise and accurate. The precision is evi-

dent by the clearly delineated predictions within a narrow range for the given input values

for all three example models. The accuracy is evident by the predictions being consistently

close to the simulation results. Also, additional techniques are available to improve the

accuracy, but at the cost of increased complexity and effort. These model examples (three

servers, four servers and eight servers), along with the two server example presented ear-

lier, show consistently precise and accurate results across what is assumed to be the entire

range of practical situations, and thus verify the predictive qualities of Simalytic Models.

146

6. Conclusion

The traditional view of planning the capacity of a system is evolving because of the

desire to predict the performance of the application. Applications designed to exploit a

client/server architecture greatly increase the complexity of both the computer system

configurations and the applications themselves. Predicting the responsiveness of those

more complex applications requires a more complex modeling methodology. But adding

complexity to a modeling effort also adds time, effort and cost. There are many tech-

niques and tools that are beginning to address this evolution, but none of them can provide

the desired level of detail for every situation and every application.

Modeling an application at the enterprise level requires an understanding of the

applications and measurements of the transaction response times. Different modeling

techniques (simulation, analytic queuing theory or hybrid) and different modeling tools

(platform-centric or general purpose) can be used to predict transaction response times for

individual systems or servers. But none of these can be used alone to produce a detailed

enterprise level model at a reasonable development cost.

By following the steps for implementing a Simalytic Model, the modeler can rap-

idly produce an application model at the level of detail needed to make business decisions.

Combining different modeling techniques (simulation and analytic queuing theory) and

different modeling tools (platform-centric and general purpose) allows rapid analysis with

reusable components created with the most applicable tools to reduce the time, effort and

cost of developing an enterprise application model. As more detailed results are required,

more sophisticated tools can then be used to increase the understanding of critical sections

147

of the model. This level of analysis provides insight into the application’s future perform-

ance that would not otherwise be available. Using the Simalytic Modeling Technique both

improves the understanding of the application as well as identifies which systems require

more detailed analysis. It protects the investment an organization has made in training and

in the acquisition of existing tools. It allows the most appropriate tools to be used for

each modeling effort. Capacity planning is still fundamental to business success. But just

as application designs are moving away from single system solutions, modeling for capac-

ity planning must move away from single system analysis and begin predicting the applica-

tion across the enterprise.

6.1 Hypothesis

The hypothesis as stated in section 1.8.2 Hypothesis on page 19 is: It is possible

to develop a viable modeling methodology that will use a general purpose simulation

modeling tool as an underlying framework and utilize the results of an analytic modeling

tool to represent individual nodes or systems when predicting the capacity requirements of

an application at the enterprise level.

6.2 Summary of Proof of Hypothesis

This hypothesis has been proven by the development of a hybrid modeling meth-

odology, The Simalytic Enterprise Modeling Methodology. The proof includes the actual

implementation of several models using the technique in addition to the development of

the methodology and the process to implement the methodology. To accomplish this, the

methodology was developed and presented at several levels.

148

 The first level was that of basic mathematical formulae. The Simalytic Modeling

formula is presented in section 3.3 Foundation on page 61, which is derived from the

simulation formula (2.2.2 Simulation on page 34) and the queuing theory formula (2.2.1

Analytic Queuing Theory on page 30). A transform function, the Simalytic Function, was

developed to enable the results of the queuing theory formula to be used in the simulation

formula, thus creating the Simalytic formula.

At the next level, these formulae were implemented using a mathematical analysis

tool, MathCAD, to verify that the three formulae (simulation, queuing theory and Sima-

lytic) produce acceptably similar results. The results, presented as graphs in section 7.5

Appendix E: MathCAD Formulae Results Charts on page 180, show a high degree of cor-

relation between the three formulae. The results of the queuing theory formula were pre-

sented in surface plots to show that the relationships between the variables used in all

three of the formulae (arrival rate, service time and response time) are a smooth curve

across the values of interest and thus interpolation between sample results is reasonable.

The third level is the step-by-step process developed in section 4.2.4 Steps to Build

a Simalytic Model on page 102. Each step in the process was identified and discussed.

The process to implement a Simalytic Model was shown to include the same steps that are

required to implement a simulation model with the addition of those steps to implement

the Simalytic Function.

The fourth level is the implementation of an example of a two server application,

using the process developed in section 4.2.4, with a commercial simulation tool for the

Simalytic Model framework. Use of this tool was shown to be valid because the results of

149

this tool were shown to produce near identical results to the MathCAD implementation, as

shown by the charts in section 7.5 Appendix E: MathCAD Formulae Results Charts on

page 180. Section 4.2.5.1 Example Process Implementation on page 117 presented the

details of the step-by-step implementation and the results of both the simulation model and

the Simalytic Model.

The last level is the set of experiments, presented in section 5 Investigations into

Simalytic Modeling on page 127, that extended the two server implementation from sec-

tion 4.2.5.1 with additional servers. This level showed that the Simalytic Modeling Meth-

odology is extensible and can be generalized to what is considered a large-scale

client/server enterprise.

This multi-level approach, as presented in Figure 38 Summary of Proof, has shown

a consistent progression from the mathematical foundation to the practical implementa-

Queuing

Simulation

Simalytic

Single
Server

Multiple
Servers

Single
Server

Multiple
Servers

Multiple DeviceSingle Device

Formulae

Models

MathCAD
Queuing

Simulation

Simalytic

Queuing

Simulation

Simalytic

Process

Scenarios Tested Equivalency Established

Figure 38 Summary of Proof

150

tion. At each level, the Simalytic Modeling Methodology has been compared to a simula-

tion implementation. In each case, it has been shown to be a valid technique and the re-

sults have been verified.

6.2.1 Validation of Proof

Each level has shown the Simalytic Modeling Methodology valid by comparing the

results of a Simalytic Model to the results of the same environment implemented with a

simulation model. In all modeling cases, the Simalytic Model has been shown to produce

equally acceptable enterprise model results within the bounds of reasonable usage. By

verifying the consistency of the results across what is assumed to be the entire range of

practical situations, Simalytic Modeling has been shown to be a valid technique for solving

that set of problems.

6.2.2 Verification of Proof

At each level, the consistency of the results between the Simalytic Models and the

simulation models has been verified by implementing the same environment using both

techniques. Analysis of these results shows that the Simalytic Model returns clearly de-

lineated (i.e. precise) predictions. These consistently precise results, that is, results within

a narrow range for the given input values across what is assumed to be the entire range of

practical situations, verify the predictive qualities of Simalytic Models.

6.3 Application

A practical implementation of the Simalytic Modeling Technique is to develop an

interface between existing general purpose simulation tools such as SES/Workbench

(SES), Qase (AST), Pro-Sim (MSI), ProModel (ProModel), CSIM (MS) or Simul8

151

(Visual) with existing platform-centric queuing theory tools such as Best/1 (BGS), Opti-

Model (CA-Legent), CMF/MODEL (B&B), ISM/CP (ISM) or ATHENE (MSI). In ad-

dition, other tools could be used in place of the platform-centric analytic submodels,

including design engineering models such as SPE*ED (PES; Smith 1995) and general

analytic tools such as QSolver/1 (Menascé, Almeida, and Dowdy 1994) and CAPS

(ACR). This partial list of tools is not intended to include all tools that could be used with

this technique. This list represents some of the tools the author has had some level of ex-

perience with and believes should be usable in building a Simalytic Model. Some tools,

such as QNAP II, Modline (SAS), Qase and SES/strategizer (SES), have some level of

both simulation and analytic model solvers (Pooley 1995; Smith 1995). Both the list of

simulation tools and the list of analytic tools are large enough to show that the Simalytic

Modeling Technique is a general methodology with broad application and not a special-

ized implementation of a single tool.

6.4 Future Research

The two major areas for future research in Simalytic Modeling are tool integration

and Simalytic Function refinement.

6.4.1 Tool Integration

The Simalytic Modeling Methodology presented here uses the results of a queuing

theory modeling tool that has been run independently. The natural follow-on to this re-

search would be to integrate the queuing theory tools directly into the simulation tools.

However, one of the major advantages to Simalytic Modeling is that it allows the use of

any combination of simulation and queuing theory tools. Integrating a single queuing the-

152

ory tool into a single simulation tool would remove this significant advantage. The solu-

tion to the apparent paradox is to extend the current research in exchanging model de-

scriptions between tools (Smith and Williams 1995) by Dr. Connie Smith to include

dynamic interaction during execution.

6.4.2 Simalytic Function Refinement

The work thus far in Simalytic Modeling has shown the Simalytic Function to be

usable for capacity planning given a reasonable set of assumptions and expectations of ac-

curacy. Furthermore, the accuracy of the resulting Simalytic Model is directly dependent

on the Simalytic Function implementation. Additional research into different implementa-

tion techniques and the use of additional information available from each server in the

simulation framework could improve the accuracy, expand the applicable problem set and

address client/server situations neither identified nor anticipated in this paper.

6.5 Concluding Remarks

There are very few academic works that discuss more than just the fundamentals

of capacity planning in general and, more specifically, modeling systems to predict future

capacity requirements. The majority of work in this area of computer science has been

related to commercial products that are either on the commercial market or were being

developed by the authors during their academic studies. Examples are: the Buzen Esti-

mator evolved into Best/1 (BGS) (from Dr. Jeff Buzen’s dissertation); PEDAS (Goettge

1990) evolved into Qase (AST) and SPE*ED (PES) was developed by Dr. Connie Smith

from the work presented in her book (Smith 1990). Even textbooks with a greater aca-

demic format, such as (Menascé, Almeida, and Dowdy 1994), have somewhat of a com-

153

mercial influence. Dr. Menascé sells a more robust version of the QSolver/1 tool included

with the book. Even the more theoretical papers have a commercial influence because

their authors are almost always affiliated with a company selling either a commercial mod-

eling tool or computer hardware. Examples are: (Baker and Shih 1992) with an affiliation

to the IBM T.J. Watson Research Center, and (Lipovich 1995) with an affiliation to BGS

Systems, Inc (BGS). This discussion does not mean to imply that there is anything im-

proper with any of these associations, either the ones above or any others. The point is

that capacity planning has been viewed as an implementation or support issue, not as an

area of research. The methodology, and associated technique, described in this disserta-

tion is not only usable for capacity planners in industry, but also supported by an academic

foundation and sound research. It is hoped that this dissertation will be used very cost-

effectively in the practical world, as well as encourage additional research in capacity

planning and performance analysis.

154

7. Appendices

7.1 Appendix A: Simulation Models

The following figures are screen images of the simulation models used throughout

this paper to generate the baseline simulation results. They were implemented in Simul8

(Visual), which is a general purpose simulation tool. The symbols used are:

• The small computer represents either a single server or the CPU (central proc-

essing unit) in a multi-device server model.

• The floppy disk symbol represents any type of disk device. The fact that a

floppy disk symbol was used is not meant to imply the servers use floppy disks, only

that it is a more recognizable symbol and represents some type of disk.

• The bin symbol, a partially full tub with an arrow pointing into it from the left, is

the queue for whatever symbol is directly to its right. Simul8 requires a queue for

every server to avoid transactions being lost if one arrives when the server is busy.

Every server will have a queue although they are sometimes hidden in the image of

the screen to reduce the complexity of the image.

• The input symbol, a rectangle with an arrow, shows where transactions are cre-

ated and controls the arrival distributions, which can be either internal (derived from a

mathematical distribution) or external (from actual trace data).

• The multi-block symbol represents a zero delay server and queue sub-model.

The only function of this server is to provide a count of the transactions entering the

155

system for the reports. These servers do not add any delay to the transaction re-

sponse times.

• The user symbol, a person at a desk, combines the function of the input symbol

and the multi-block symbol above to reduce the number of symbols on the more com-

plex models. Functionally it is exactly the same as those two symbols.

• The transactions complete symbol, a list with a check, collects statistics on each

of the completed transactions.

A solid line connects each pair of servers to show the transactions flow. Although

not a requirement of Simul8, in the models presented here the transaction flow is generally

left to right and from top to bottom. It is always from the input symbol(s) to the transac-

tions complete symbol(s). Transactions routing logic is not shown on the screen and is

available only by opening the modification dialog for the given server.

The following figures, Figure 39 through Figure 49, are screen images of the Si-

mul8 models used throughout this paper, showing one, two, three, four and eight server

models, both series and routing.

156

Figure 39 Simul8 Model S1SA.S8 - One Server

157

Figure 40 Simul8 Model S2SA.S8 - Two Servers in Series

Figure 41 Simul8 Model S2PA.S8 - Two Servers Routed

158

Figure 42 Simul8 Model S3SA.S8 - Three Servers in Series

Figure 43 Simul8 Model S3PA.S8 - Three Servers Routed

159

Figure 44 Simul8 Model S4SA.S8 - Four Servers in Series

Figure 45 - Simul8 Model S4PA.S8 - Four Servers Routed

160

Figure 46 Simul8 Model MDxxa.S8 - Multi-device Server

161

Figure 47 Three Server Simulation Model

162

Figure 48 Four Server Simulation Model

163

Figure 49 Eight Server Simulation Model

164

7.2 Appendix B: Queuing Theory Models

The queuing theory tool OpenQN was used to create the performance characteris-

tics of the servers. This analytic modeling tool was specifically designed to model com-

puter systems and included with Dr. Menascé’s book (Menascé, Almeida, and Dowdy

1994). It is easy to use and generates results quickly. It is a simple Pascal program that

reads an input file of workload parameters and produces a report.

Figure 50 and Figure 51 show examples of the input file and output report for a

single server with a single device. These are examples of the OpenQN models used to

generate the results to compare to the MathCAD queuing theory results.

 1 1 devices(CPU) workloads(W1)
 0.5 Vector_N
 0 0 Device 1 type (LI): CPU
>>>> Service Demand Matrix
 0.1

Figure 50 OpenQN Input Example - Single Device Server

OpenQN - (c) Copr. 1994 D. Menasce', V. Almeida, and L. Dowdy.
 All Rights Reserved.
This program comes with the book 'Capacity Planning and
Performance Modeling: from mainframes to client-server systems'
by Menasce, Almeida, and Dowdy, published by Prentice Hall.

>>>> Class 1 Throughput: 0.500000

>>>> Utilization of Device 1 : 5.000 %

Class 1 metrics:

>>>> Device Residence Times:

 Device 1 : 0.105263

>>>> Class 1 Response Time........: 0.105263
>>>> Class 1 Avg. Number in System: 0.052632

>>>> Press Enter

Figure 51 OpenQN Output Example - Single Device Server

165

Figure 52 and Figure 53 show examples of the input file and output report for a

system (multi-device server) server with a CPU and four disk devices. These are examples

of the OpenQN models used to generate the response time results to be implemented in

the Simalytic Function.

 5 1 devices(CPU,D1,D2,D3,D4) workloads(W1)
 0.5 Vector_N
 0 0 Device 1 type (LI): CPU
 0 0 Device 2 type (LI): Disk1
 0 0 Device 3 type (LI): Disk2
 0 0 Device 4 type (LI): Disk3
 0 0 Device 5 type (LI): Disk4
>>>> Service Demand Matrix
 0.0050
 0.0200
 0.0250
 0.0200
 0.0300

Figure 52 OpenQN Input Example - Multiple Device Server

OpenQN - (c) Copr. 1994 D. Menasce', V. Almeida, and L. Dowdy.
 All Rights Reserved.
This program comes with the book 'Capacity Planning and
Performance Modeling: from mainframes to client-server systems'
by Menasce, Almeida, and Dowdy, published by Prentice Hall.
>>>> Class 1 Throughput: 0.500000

>>>> Utilization of Device 1 : 0.250 %
>>>> Utilization of Device 2 : 7.500 %
>>>> Utilization of Device 3 : 8.750 %
>>>> Utilization of Device 4 : 4.000 %
>>>> Utilization of Device 5 : 4.500 %

Class 1 metrics:

>>>> Device Residence Times:

 Device 1 : 0.005013
 Device 2 : 0.162162
 Device 3 : 0.191781
 Device 4 : 0.083333
 Device 5 : 0.094241

>>>> Class 1 Response Time........: 0.536530
>>>> Class 1 Avg. Number in System: 0.268265

>>>> Press Enter

Figure 53 OpenQN Output Example - Multiple Device Server

166

Table 9 shows the four server profiles used and lists the service times for each that

were implemented with the OpenQN queuing theory models. The service times represent

reasonable device times that are seen in real world systems. The total system service time

for each server adds up to the server service time used in the single server models dis-

cussed in section 3.5.3 Validation of the Mathematical Foundation on page 86. This al-

lows the single results to be compared to the multi-device system results to illustrate the

fallacy of using a single server node to model a complex system. The server names reflect

the overall service time for each sever: S01 has a service time of 0.1 seconds, S05 has a

service time of 0.5 seconds, S10 has a service time of 1.0 seconds, and S15 has a service

time of 1.5 seconds.

Table 10 OpenQN Response Times on page 167 shows the OpenQN queuing the-

ory model response times for the four server profiles in Table 9. Notice that these models

were not run for each server for all of the arrival rates because there was no significant

change in the response times.

OpenQN Server Profiles
OpenQN File S01 S05 S10 S15

MIPS
or I/O
Time Qty

Service
Time

MIPS
or I/O
Time Qty

Service
Time

MIPS
or I/O
Time Qty

Service
Time

MIPS
or I/O
Time Qty

Service
Time

CPU (Instructions) 10 50000 0.0050 10 50000 0.0050 10 100000 0.0100 10 200000 0.0200
Disk 1 (I/O's) 0.010 2 0.0200 0.010 15 0.1500 0.010 25 0.2500 0.010 31 0.3100
Disk 2 (I/O's) 0.025 1 0.0250 0.025 7 0.1750 0.025 13 0.3250 0.025 20 0.5000
Disk 3 (I/O's) 0.020 1 0.0200 0.020 4 0.0800 0.020 14 0.2800 0.020 17 0.3400
Disk 4 (I/O's) 0.015 2 0.0300 0.015 6 0.0900 0.015 9 0.1350 0.015 22 0.3300

Total Service time 0.1000 0.5000 1.0000 1.5000

Table 9 OpenQN Device Service Times

167

Arrival
Rate

S01 S05 S10 S15

00.01 0.100 0.501 1.003 1.506
00.05 1.013 1.529
00.08 1.022
00.10 0.100 0.507 1.027 1.560
00.20 1.624
00.25 1.071
00.30 1.695
00.40 1.773
00.50 1.154 1.859
00.60 1.954
00.70 2.061
00.75 1.252 2.119
00.80 2.181
00.90 2.319
01.00 0.102 0.579 1.370 2.477
01.10 2.663
01.20 2.885
01.25 1.514
01.30 3.156
01.40 3.497
01.50 1.696 3.947
01.60 4.581
01.70 5.567
01.75 1.934
01.80 7.411
01.90 12.620
01.95 22.739
01.98 52.816
01.99 102.843
02.00 0.694 2.260
02.10 2.428
02.20 2.627
02.30 2.868
02.40 3.166
02.50 3.547
02.60 4.059

Arrival
Rate

S01 S05 S10 S15

02.70 4.793
02.80 5.968
02.90 8.283
03.00 0.875 15.987
03.05 40.353
03.10
04.00 1.222
05.00 2.302
05.10 2.573
05.20 2.938
05.30 3.462
05.40 4.292
05.50 5.850
05.60 10.019
05.70 71.371
05.75
10.00 0.131
15.00 0.157
20.00 0.197
25.00 0.272
30.00 0.506
31.00 0.651
31.50 0.777
31.75 0.868
32.00 0.992
32.25 1.171
32.50 1.454
32.75 1.974
33.00 3.266
33.10 4.555
33.20 7.772
33.25 12.274
33.30 30.275

Table 10 OpenQN Response Times

168

7.3 Appendix C: Simalytic Models

The Simalytic Models appear very similar to the single server simulation models.

Figure 54 shows the Simalytic Model for the Order Entry/Shipping example in section

4.2.5 Implementation Example on page 115. The symbols used in the Simalytic Models

are the same as those used for the simulation models described in section 7.1 Appendix A:

Simulation Models on page 154.

However, instead of each server having a static service time, the distribution name

entered for the service time is actually used by the Visual Basic code to determine the

service time value returned and used by the model. Figure 55 Visual Basic Code for Si-

malytic Function on pages 170 through 175 shows the Visual Basic code for the Simalytic

Function in the model shown in Figure 54. The distribution name DistribOE is used by the

Simalytic Function to identify transactions from the Order Entry server. The distribution

Figure 54 Simalytic Model Example - Two Servers

169

name DistribS is used by the Simalytic Function to identify transactions from Shipping.

The distributions DistribS01, DistribS05, DistribS10, and DistribS15 were used for server

type S01, S05, S10 and S15 respectively.

170

Public CumIRTimeOE, CumIRTimeS As Single
Public CumIRTimeS01, CumIRTimeS05, CumIRTimeS10, CumIRTimeS15 As Single
Public CumIRTimeS01a, CumIRTimeS05a, CumIRTimeS10a, CumIRTimeS15a As Single
Public OldTimeOE, OldTimeS As Single
Public OldTimeS01, OldTimeS05, OldTimeS10, OldTimeS15 As Single
Public OldTimeS01a, OldTimeS05a, OldTimeS10a, OldTimeS15a As Single
Public NumOE, NumS As Single
Public NumS01, NumS05, NumS10, NumS15 As Single
Public NumS01a, NumS05a, NumS10a, NumS15a As Single

Private Sub Form_LinkExecute(CmdStr As String, Cancel As Integer)

 If CmdStr = "RESET:" Then
 CumIRTimeOE = 0
 CumIRTimeS = 0
 CumIRTimeS01 = 0
 CumIRTimeS05 = 0
 CumIRTimeS10 = 0
 CumIRTimeS15 = 0
 CumIRTimeS01a = 0
 CumIRTimeS05a = 0
 CumIRTimeS10a = 0
 CumIRTimeS15a = 0

 OldTimeOE = 0
 OldTimeS = 0
 OldTimeS01 = 0
 OldTimeS05 = 0
 OldTimeS10 = 0
 OldTimeS15 = 0
 OldTimeS01a = 0
 OldTimeS05a = 0
 OldTimeS10a = 0
 OldTimeS15a = 0

 NumOE = 0
 NumS = 0
 NumS01 = 0
 NumS05 = 0
 NumS10 = 0
 NumS15 = 0
 NumS01a = 0
 NumS05a = 0
 NumS10a = 0
 NumS15a = 0
 End If

 If CmdStr = "WARM:" Then
 If NumOE > 0 Then AvgIRTimeOE = CumIRTimeOE / NumOE
 If NumS > 0 Then AvgIRTimeS = CumIRTimeS / NumS
 If NumS01 > 0 Then AvgIRTimeS01 = CumIRTimeS01 / NumS01
 If NumS05 > 0 Then AvgIRTimeS05 = CumIRTimeS05 / NumS05
 If NumS10 > 0 Then AvgIRTimeS10 = CumIRTimeS10 / NumS10
 If NumS15 > 0 Then AvgIRTimeS15 = CumIRTimeS15 / NumS15
 If NumS01a > 0 Then AvgIRTimeS01a = CumIRTimeS01a / NumS01a
 If NumS05a > 0 Then AvgIRTimeS05a = CumIRTimeS05a / NumS05a
 If NumS10a > 0 Then AvgIRTimeS10a = CumIRTimeS10a / NumS10a
 If NumS15a > 0 Then AvgIRTimeS15a = CumIRTimeS15a / NumS15a
 End If

 If CmdStr = "ENDRUN:" Then
 If NumOE > 0 Then AvgIRTimeOE = CumIRTimeOE / NumOE
 If NumS > 0 Then AvgIRTimeS = CumIRTimeS / NumS
 If NumS01 > 0 Then AvgIRTimeS01 = CumIRTimeS01 / NumS01
 If NumS05 > 0 Then AvgIRTimeS05 = CumIRTimeS05 / NumS05
 If NumS10 > 0 Then AvgIRTimeS10 = CumIRTimeS10 / NumS10
 If NumS15 > 0 Then AvgIRTimeS15 = CumIRTimeS15 / NumS15
 If NumS01a > 0 Then AvgIRTimeS01a = CumIRTimeS01a / NumS01a
 If NumS05a > 0 Then AvgIRTimeS05a = CumIRTimeS05a / NumS05a
 If NumS10a > 0 Then AvgIRTimeS10a = CumIRTimeS10a / NumS10a
 If NumS15a > 0 Then AvgIRTimeS15a = CumIRTimeS15a / NumS15a
 End If

Figure 55 Visual Basic Code for Simalytic Function

171

 'DistribOE
 If CmdStr = "DISTRIB: DistribOE" Then
 NewTimeOE = SimTime()
 IRTimeOE = NewTimeOE - OldTimeOE
 CumIRTimeOE = CumIRTimeOE + IRTimeOE
 NumOE = NumOE + 1
 AvgIRTimeOE = CumIRTimeOE / NumOE
 If AvgIRTimeOE <= 0.061 Then
 SRTimeOE = 6.06
 ElseIf AvgIRTimeOE <= 0.062 Then: SRTimeOE = 2.46
 ElseIf AvgIRTimeOE <= 0.063 Then: SRTimeOE = 1.15
 ElseIf AvgIRTimeOE <= 0.065 Then: SRTimeOE = 0.92
 ElseIf AvgIRTimeOE <= 0.066 Then: SRTimeOE = 0.76
 ElseIf AvgIRTimeOE <= 0.067 Then: SRTimeOE = 0.66
 ElseIf AvgIRTimeOE <= 0.071 Then: SRTimeOE = 0.43
 ElseIf AvgIRTimeOE <= 0.077 Then: SRTimeOE = 0.33
 ElseIf AvgIRTimeOE <= 0.083 Then: SRTimeOE = 0.27
 ElseIf AvgIRTimeOE <= 0.09 Then: SRTimeOE = 0.23
 ElseIf AvgIRTimeOE <= 0.1 Then: SRTimeOE = 0.2
 ElseIf AvgIRTimeOE <= 0.11 Then: SRTimeOE = 0.18
 ElseIf AvgIRTimeOE <= 0.13 Then: SRTimeOE = 0.16
 ElseIf AvgIRTimeOE <= 0.14 Then: SRTimeOE = 0.15
 ElseIf AvgIRTimeOE <= 0.17 Then: SRTimeOE = 0.14
 ElseIf AvgIRTimeOE <= 0.2 Then: SRTimeOE = 0.13
 ElseIf AvgIRTimeOE <= 0.25 Then: SRTimeOE = 0.12
 ElseIf AvgIRTimeOE <= 0.33 Then: SRTimeOE = 0.12
 ElseIf AvgIRTimeOE <= 0.5 Then: SRTimeOE = 0.11
 Else: SRTimeOE = 0.1
 End If
 SetDistribution "DistribOE", Val(SRTimeOE), 0, 0, 0, "FIXED"
 OldTimeOE = NewTimeOE
 End If

 'DistribS
 If CmdStr = "DISTRIB: DistribS" Then
 NewTimeS = SimTime()
 IRTimeS = NewTimeS - OldTimeS
 CumIRTimeS = CumIRTimeS + IRTimeS
 NumS = NumS + 1
 AvgIRTimeS = CumIRTimeS / NumS
 If AvgIRTimeS <= 0.71 Then
 SRTimeS = 38.21
 ElseIf AvgIRTimeS <= 0.74 Then: SRTimeS = 15.76
 ElseIf AvgIRTimeS <= 0.77 Then: SRTimeS = 10.65
 ElseIf AvgIRTimeS <= 0.8 Then: SRTimeS = 8.33
 ElseIf AvgIRTimeS <= 0.83 Then: SRTimeS = 6.98
 ElseIf AvgIRTimeS <= 0.87 Then: SRTimeS = 6.08
 ElseIf AvgIRTimeS <= 0.91 Then: SRTimeS = 5.43
 ElseIf AvgIRTimeS <= 0.95 Then: SRTimeS = 4.93
 ElseIf AvgIRTimeS <= 1 Then: SRTimeS = 4.54
 ElseIf AvgIRTimeS <= 1.33 Then: SRTimeS = 3.34
 ElseIf AvgIRTimeS <= 2 Then: SRTimeS = 2.7
 ElseIf AvgIRTimeS <= 4 Then: SRTimeS = 2.29
 ElseIf AvgIRTimeS <= 10 Then: SRTimeS = 2.11
 ElseIf AvgIRTimeS <= 100 Then: SRTimeS = 2.01
 Else: SRTimeS = 2
 End If
 SetDistribution "DistribS", Val(SRTimeS), 0, 0, 0, "FIXED"
 OldTimeS = NewTimeS
 End If

Figure 55 continued from previous page

172

 'DistribS01
 If CmdStr = "DISTRIB: DistribS01" Then
 NewTimeS01 = SimTime()
 IRTimeS01 = NewTimeS01 - OldTimeS01
 CumIRTimeS01 = CumIRTimeS01 + IRTimeS01
 NumS01 = NumS01 + 1
 AvgIRTimeS01 = CumIRTimeS01 / NumS01
 If AvgIRTimeS01 <= 0.03003 Then
 SRTimeS01 = 30.275
 ElseIf AvgIRTimeS01 <= 0.03008 Then: SRTimeS01 = 12.2735
 ElseIf AvgIRTimeS01 <= 0.03012 Then: SRTimeS01 = 7.7721
 ElseIf AvgIRTimeS01 <= 0.03021 Then: SRTimeS01 = 4.555
 ElseIf AvgIRTimeS01 <= 0.0303 Then: SRTimeS01 = 3.2665
 ElseIf AvgIRTimeS01 <= 0.03053 Then: SRTimeS01 = 1.9741
 ElseIf AvgIRTimeS01 <= 0.03077 Then: SRTimeS01 = 1.4536
 ElseIf AvgIRTimeS01 <= 0.03101 Then: SRTimeS01 = 1.1707
 ElseIf AvgIRTimeS01 <= 0.03125 Then: SRTimeS01 = 0.9921
 ElseIf AvgIRTimeS01 <= 0.0315 Then: SRTimeS01 = 0.8683
 ElseIf AvgIRTimeS01 <= 0.03175 Then: SRTimeS01 = 0.7771
 ElseIf AvgIRTimeS01 <= 0.03226 Then: SRTimeS01 = 0.6509
 ElseIf AvgIRTimeS01 <= 0.03333 Then: SRTimeS01 = 0.5059
 ElseIf AvgIRTimeS01 <= 0.04 Then: SRTimeS01 = 0.2724
 ElseIf AvgIRTimeS01 <= 0.05 Then: SRTimeS01 = 0.1972
 ElseIf AvgIRTimeS01 <= 0.06667 Then: SRTimeS01 = 0.1571
 ElseIf AvgIRTimeS01 <= 0.1 Then: SRTimeS01 = 0.1315
 ElseIf AvgIRTimeS01 <= 1# Then: SRTimeS01 = 0.1024
 ElseIf AvgIRTimeS01 <= 10# Then: SRTimeS01 = 0.1002
 ElseIf AvgIRTimeS01 <= 100# Then: SRTimeS01 = 0.1
 Else: SRTimeS01 = 0.1
 End If
 SetDistribution "DistribS01", Val(SRTimeS01), 0, 0, 0, "FIXED"
 OldTimeS01 = NewTimeS01
 End If

 'DistribS01a (same as DistribS01 but allows for second server with same response.)
 If CmdStr = "DISTRIB: DistribS01a" Then
 NewTimeS01a = SimTime()
 IRTimeS01a = NewTimeS01a - OldTimeS01a
 CumIRTimeS01a = CumIRTimeS01a + IRTimeS01a
 NumS01a = NumS01a + 1
 AvgIRTimeS01a = CumIRTimeS01a / NumS01a
 If AvgIRTimeS01a <= 0.03003 Then
 SRTimeS01a = 30.275
 ElseIf AvgIRTimeS01a <= 0.03008 Then: SRTimeS01a = 12.2735
 ElseIf AvgIRTimeS01a <= 0.03012 Then: SRTimeS01a = 7.7721
 ElseIf AvgIRTimeS01a <= 0.03021 Then: SRTimeS01a = 4.555
 ElseIf AvgIRTimeS01a <= 0.0303 Then: SRTimeS01a = 3.2665
 ElseIf AvgIRTimeS01a <= 0.03053 Then: SRTimeS01a = 1.9741
 ElseIf AvgIRTimeS01a <= 0.03077 Then: SRTimeS01a = 1.4536
 ElseIf AvgIRTimeS01a <= 0.03101 Then: SRTimeS01a = 1.1707
 ElseIf AvgIRTimeS01a <= 0.03125 Then: SRTimeS01a = 0.9921
 ElseIf AvgIRTimeS01a <= 0.0315 Then: SRTimeS01a = 0.8683
 ElseIf AvgIRTimeS01a <= 0.03175 Then: SRTimeS01a = 0.7771
 ElseIf AvgIRTimeS01a <= 0.03226 Then: SRTimeS01a = 0.6509
 ElseIf AvgIRTimeS01a <= 0.03333 Then: SRTimeS01a = 0.5059
 ElseIf AvgIRTimeS01a <= 0.04 Then: SRTimeS01a = 0.2724
 ElseIf AvgIRTimeS01a <= 0.05 Then: SRTimeS01a = 0.1972
 ElseIf AvgIRTimeS01a <= 0.06667 Then: SRTimeS01a = 0.1571
 ElseIf AvgIRTimeS01a <= 0.1 Then: SRTimeS01a = 0.1315
 ElseIf AvgIRTimeS01a <= 1# Then: SRTimeS01a = 0.1024
 ElseIf AvgIRTimeS01a <= 10# Then: SRTimeS01a = 0.1002
 ElseIf AvgIRTimeS01a <= 100# Then: SRTimeS01a = 0.1
 Else: SRTimeS01a = 0.1
 End If
 SetDistribution "DistribS01a", Val(SRTimeS01a), 0, 0, 0, "FIXED"
 OldTimeS01a = NewTimeS01a
 End If

Figure 55 continued from previous page

173

 'DistribS05
 If CmdStr = "DISTRIB: DistribS05" Then
 NewTimeS05 = SimTime()
 IRTimeS05 = NewTimeS05 - OldTimeS05
 CumIRTimeS05 = CumIRTimeS05 + IRTimeS05
 NumS05 = NumS05 + 1
 AvgIRTimeS05 = CumIRTimeS05 / NumS05
 If AvgIRTimeS05 <= 0.175 Then
 SRTimeS05 = 71.371
 ElseIf AvgIRTimeS05 <= 0.179 Then: SRTimeS05 = 10.019
 ElseIf AvgIRTimeS05 <= 0.182 Then: SRTimeS05 = 5.85
 ElseIf AvgIRTimeS05 <= 0.185 Then: SRTimeS05 = 4.292
 ElseIf AvgIRTimeS05 <= 0.189 Then: SRTimeS05 = 3.462
 ElseIf AvgIRTimeS05 <= 0.192 Then: SRTimeS05 = 2.938
 ElseIf AvgIRTimeS05 <= 0.196 Then: SRTimeS05 = 2.573
 ElseIf AvgIRTimeS05 <= 0.2 Then: SRTimeS05 = 2.302
 ElseIf AvgIRTimeS05 <= 0.25 Then: SRTimeS05 = 1.222
 ElseIf AvgIRTimeS05 <= 0.333 Then: SRTimeS05 = 0.875
 ElseIf AvgIRTimeS05 <= 0.5 Then: SRTimeS05 = 0.694
 ElseIf AvgIRTimeS05 <= 1# Then: SRTimeS05 = 0.579
 ElseIf AvgIRTimeS05 <= 10# Then: SRTimeS05 = 0.507
 ElseIf AvgIRTimeS05 <= 100# Then: SRTimeS05 = 0.501
 Else: SRTimeS05 = 0.5
 End If
 SetDistribution "DistribS05", Val(SRTimeS05), 0, 0, 0, "FIXED"
 OldTimeS05 = NewTimeS05
 End If

 'DistribS05a (same as DistribS05 but allows for second server with same response.)
 If CmdStr = "DISTRIB: DistribS05a" Then
 NewTimeS05a = SimTime()
 IRTimeS05a = NewTimeS05a - OldTimeS05a
 CumIRTimeS05a = CumIRTimeS05a + IRTimeS05a
 NumS05a = NumS05a + 1
 AvgIRTimeS05a = CumIRTimeS05a / NumS05a
 If AvgIRTimeS05a <= 0.175 Then
 SRTimeS05a = 71.371
 ElseIf AvgIRTimeS05a <= 0.179 Then: SRTimeS05a = 10.019
 ElseIf AvgIRTimeS05a <= 0.182 Then: SRTimeS05a = 5.85
 ElseIf AvgIRTimeS05a <= 0.185 Then: SRTimeS05a = 4.292
 ElseIf AvgIRTimeS05a <= 0.189 Then: SRTimeS05a = 3.462
 ElseIf AvgIRTimeS05a <= 0.192 Then: SRTimeS05a = 2.938
 ElseIf AvgIRTimeS05a <= 0.196 Then: SRTimeS05a = 2.573
 ElseIf AvgIRTimeS05a <= 0.2 Then: SRTimeS05a = 2.302
 ElseIf AvgIRTimeS05a <= 0.25 Then: SRTimeS05a = 1.222
 ElseIf AvgIRTimeS05a <= 0.333 Then: SRTimeS05a = 0.875
 ElseIf AvgIRTimeS05a <= 0.5 Then: SRTimeS05a = 0.694
 ElseIf AvgIRTimeS05a <= 1# Then: SRTimeS05a = 0.579
 ElseIf AvgIRTimeS05a <= 10# Then: SRTimeS05a = 0.507
 ElseIf AvgIRTimeS05a <= 100# Then: SRTimeS05a = 0.501
 Else: SRTimeS05a = 0.5
 End If
 SetDistribution "DistribS05a", Val(SRTimeS05a), 0, 0, 0, "FIXED"
 OldTimeS05a = NewTimeS05a
 End If

Figure 55 continued from previous page

174

 'DistribS10
 If CmdStr = "DISTRIB: DistribS10" Then
 NewTimeS10 = SimTime()
 IRTimeS10 = NewTimeS10 - OldTimeS10
 CumIRTimeS10 = CumIRTimeS10 + IRTimeS10
 NumS10 = NumS10 + 1
 AvgIRTimeS10 = CumIRTimeS10 / NumS10
 If AvgIRTimeS10 <= 0.328 Then
 SRTimeS10 = 40.353
 ElseIf AvgIRTimeS10 <= 0.333 Then: SRTimeS10 = 15.987
 ElseIf AvgIRTimeS10 <= 0.345 Then: SRTimeS10 = 8.283
 ElseIf AvgIRTimeS10 <= 0.357 Then: SRTimeS10 = 5.968
 ElseIf AvgIRTimeS10 <= 0.37 Then: SRTimeS10 = 4.793
 ElseIf AvgIRTimeS10 <= 0.385 Then: SRTimeS10 = 4.059
 ElseIf AvgIRTimeS10 <= 0.4 Then: SRTimeS10 = 3.547
 ElseIf AvgIRTimeS10 <= 0.417 Then: SRTimeS10 = 3.166
 ElseIf AvgIRTimeS10 <= 0.435 Then: SRTimeS10 = 2.868
 ElseIf AvgIRTimeS10 <= 0.455 Then: SRTimeS10 = 2.627
 ElseIf AvgIRTimeS10 <= 0.476 Then: SRTimeS10 = 2.428
 ElseIf AvgIRTimeS10 <= 0.5 Then: SRTimeS10 = 2.26
 ElseIf AvgIRTimeS10 <= 0.571 Then: SRTimeS10 = 1.934
 ElseIf AvgIRTimeS10 <= 0.667 Then: SRTimeS10 = 1.696
 ElseIf AvgIRTimeS10 <= 0.8 Then: SRTimeS10 = 1.514
 ElseIf AvgIRTimeS10 <= 1# Then: SRTimeS10 = 1.37
 ElseIf AvgIRTimeS10 <= 1.333 Then: SRTimeS10 = 1.252
 ElseIf AvgIRTimeS10 <= 2# Then: SRTimeS10 = 1.154
 ElseIf AvgIRTimeS10 <= 4# Then: SRTimeS10 = 1.071
 ElseIf AvgIRTimeS10 <= 10# Then: SRTimeS10 = 1.027
 ElseIf AvgIRTimeS10 <= 12.5 Then: SRTimeS10 = 1.022
 ElseIf AvgIRTimeS10 <= 20# Then: SRTimeS10 = 1.013
 ElseIf AvgIRTimeS10 <= 100# Then: SRTimeS10 = 1.003
 Else: SRTimeS10 = 1#
 End If
 SetDistribution "DistribS10", Val(SRTimeS10), 0, 0, 0, "FIXED"
 OldTimeS10 = NewTimeS10
 End If

 'DistribS10a (same as DistribS10 but allows for second server with same response.)
 If CmdStr = "DISTRIB: DistribS10a" Then
 NewTimeS10a = SimTime()
 IRTimeS10a = NewTimeS10a - OldTimeS10a
 CumIRTimeS10a = CumIRTimeS10a + IRTimeS10a
 NumS10a = NumS10a + 1
 AvgIRTimeS10a = CumIRTimeS10a / NumS10a
 If AvgIRTimeS10a <= 0.328 Then
 SRTimeS10a = 40.353
 ElseIf AvgIRTimeS10a <= 0.333 Then: SRTimeS10a = 15.987
 ElseIf AvgIRTimeS10a <= 0.345 Then: SRTimeS10a = 8.283
 ElseIf AvgIRTimeS10a <= 0.357 Then: SRTimeS10a = 5.968
 ElseIf AvgIRTimeS10a <= 0.37 Then: SRTimeS10a = 4.793
 ElseIf AvgIRTimeS10a <= 0.385 Then: SRTimeS10a = 4.059
 ElseIf AvgIRTimeS10a <= 0.4 Then: SRTimeS10a = 3.547
 ElseIf AvgIRTimeS10a <= 0.417 Then: SRTimeS10a = 3.166
 ElseIf AvgIRTimeS10a <= 0.435 Then: SRTimeS10a = 2.868
 ElseIf AvgIRTimeS10a <= 0.455 Then: SRTimeS10a = 2.627
 ElseIf AvgIRTimeS10a <= 0.476 Then: SRTimeS10a = 2.428
 ElseIf AvgIRTimeS10a <= 0.5 Then: SRTimeS10a = 2.26
 ElseIf AvgIRTimeS10a <= 0.571 Then: SRTimeS10a = 1.934
 ElseIf AvgIRTimeS10a <= 0.667 Then: SRTimeS10a = 1.696
 ElseIf AvgIRTimeS10a <= 0.8 Then: SRTimeS10a = 1.514
 ElseIf AvgIRTimeS10a <= 1# Then: SRTimeS10a = 1.37
 ElseIf AvgIRTimeS10a <= 1.333 Then: SRTimeS10a = 1.252
 ElseIf AvgIRTimeS10a <= 2# Then: SRTimeS10a = 1.154
 ElseIf AvgIRTimeS10a <= 4# Then: SRTimeS10a = 1.071
 ElseIf AvgIRTimeS10a <= 10# Then: SRTimeS10a = 1.027
 ElseIf AvgIRTimeS10a <= 12.5 Then: SRTimeS10a = 1.022
 ElseIf AvgIRTimeS10a <= 20# Then: SRTimeS10a = 1.013
 ElseIf AvgIRTimeS10a <= 100# Then: SRTimeS10a = 1.003
 Else: SRTimeS10a = 1#
 End If
 SetDistribution "DistribS10a", Val(SRTimeS10a), 0, 0, 0, "FIXED"
 OldTimeS10a = NewTimeS10a
 End If

Figure 55 continued from previous page

175

 'DistribS15
 If CmdStr = "DISTRIB: DistribS15" Then
 NewTimeS15 = SimTime()
 IRTimeS15 = NewTimeS15 - OldTimeS15
 CumIRTimeS15 = CumIRTimeS15 + IRTimeS15
 NumS15 = NumS15 + 1
 AvgIRTimeS15 = CumIRTimeS15 / NumS15
 If AvgIRTimeS15 <= 0.505 Then
 SRTimeS15 = 52.816
 ElseIf AvgIRTimeS15 <= 0.513 Then: SRTimeS15 = 22.739
 ElseIf AvgIRTimeS15 <= 0.526 Then: SRTimeS15 = 12.62
 ElseIf AvgIRTimeS15 <= 0.556 Then: SRTimeS15 = 7.411
 ElseIf AvgIRTimeS15 <= 0.588 Then: SRTimeS15 = 5.567
 ElseIf AvgIRTimeS15 <= 0.625 Then: SRTimeS15 = 4.581
 ElseIf AvgIRTimeS15 <= 0.667 Then: SRTimeS15 = 3.947
 ElseIf AvgIRTimeS15 <= 0.714 Then: SRTimeS15 = 3.497
 ElseIf AvgIRTimeS15 <= 0.769 Then: SRTimeS15 = 3.156
 ElseIf AvgIRTimeS15 <= 0.833 Then: SRTimeS15 = 2.885
 ElseIf AvgIRTimeS15 <= 0.909 Then: SRTimeS15 = 2.663
 ElseIf AvgIRTimeS15 <= 1# Then: SRTimeS15 = 2.477
 ElseIf AvgIRTimeS15 <= 1.111 Then: SRTimeS15 = 2.319
 ElseIf AvgIRTimeS15 <= 1.25 Then: SRTimeS15 = 2.181
 ElseIf AvgIRTimeS15 <= 1.333 Then: SRTimeS15 = 2.119
 ElseIf AvgIRTimeS15 <= 1.429 Then: SRTimeS15 = 2.061
 ElseIf AvgIRTimeS15 <= 1.667 Then: SRTimeS15 = 1.954
 ElseIf AvgIRTimeS15 <= 2# Then: SRTimeS15 = 1.859
 ElseIf AvgIRTimeS15 <= 2.5 Then: SRTimeS15 = 1.773
 ElseIf AvgIRTimeS15 <= 3.333 Then: SRTimeS15 = 1.695
 ElseIf AvgIRTimeS15 <= 5# Then: SRTimeS15 = 1.624
 ElseIf AvgIRTimeS15 <= 10# Then: SRTimeS15 = 1.56
 ElseIf AvgIRTimeS15 <= 20# Then: SRTimeS15 = 1.529
 ElseIf AvgIRTimeS15 <= 100# Then: SRTimeS15 = 1.506
 Else: SRTimeS15 = 1.5
 End If
 SetDistribution "DistribS15", Val(SRTimeS15), 0, 0, 0, "FIXED"
 OldTimeS15 = NewTimeS15
 End If

 'DistribS15a same as DistribS15 but allows for second server with same response.)
 If CmdStr = "DISTRIB: DistribS15a" Then
 NewTimeS15a = SimTime()
 IRTimeS15a = NewTimeS15a - OldTimeS15a
 CumIRTimeS15a = CumIRTimeS15a + IRTimeS15a
 NumS15a = NumS15a + 1
 AvgIRTimeS15a = CumIRTimeS15a / NumS15a
 If AvgIRTimeS15a <= 0.505 Then
 SRTimeS15a = 52.816
 ElseIf AvgIRTimeS15a <= 0.513 Then: SRTimeS15a = 22.739
 ElseIf AvgIRTimeS15a <= 0.526 Then: SRTimeS15a = 12.62
 ElseIf AvgIRTimeS15a <= 0.556 Then: SRTimeS15a = 7.411
 ElseIf AvgIRTimeS15a <= 0.588 Then: SRTimeS15a = 5.567
 ElseIf AvgIRTimeS15a <= 0.625 Then: SRTimeS15a = 4.581
 ElseIf AvgIRTimeS15a <= 0.667 Then: SRTimeS15a = 3.947
 ElseIf AvgIRTimeS15a <= 0.714 Then: SRTimeS15a = 3.497
 ElseIf AvgIRTimeS15a <= 0.769 Then: SRTimeS15a = 3.156
 ElseIf AvgIRTimeS15a <= 0.833 Then: SRTimeS15a = 2.885
 ElseIf AvgIRTimeS15a <= 0.909 Then: SRTimeS15a = 2.663
 ElseIf AvgIRTimeS15a <= 1# Then: SRTimeS15a = 2.477
 ElseIf AvgIRTimeS15a <= 1.111 Then: SRTimeS15a = 2.319
 ElseIf AvgIRTimeS15a <= 1.25 Then: SRTimeS15a = 2.181
 ElseIf AvgIRTimeS15a <= 1.333 Then: SRTimeS15a = 2.119
 ElseIf AvgIRTimeS15a <= 1.429 Then: SRTimeS15a = 2.061
 ElseIf AvgIRTimeS15a <= 1.667 Then: SRTimeS15a = 1.954
 ElseIf AvgIRTimeS15a <= 2# Then: SRTimeS15a = 1.859
 ElseIf AvgIRTimeS15a <= 2.5 Then: SRTimeS15a = 1.773
 ElseIf AvgIRTimeS15a <= 3.333 Then: SRTimeS15a = 1.695
 ElseIf AvgIRTimeS15a <= 5# Then: SRTimeS15a = 1.624
 ElseIf AvgIRTimeS15a <= 10# Then: SRTimeS15a = 1.56
 ElseIf AvgIRTimeS15a <= 20# Then: SRTimeS15a = 1.529
 ElseIf AvgIRTimeS15a <= 100# Then: SRTimeS15a = 1.506
 Else: SRTimeS15a = 1.5
 End If
 SetDistribution "DistribS15a", Val(SRTimeS15a), 0, 0, 0, "FIXED"
 OldTimeS15a = NewTimeS15a
 End If
S8_Signal_Done
End Sub

Figure 55 continued from previous page

176

Figure 56 Three Server Simalytic Model below, Figure 57 Four Server Simalytic

Model below, and Figure 58 Eight Server Simalytic Model on page 177 show the Sima-

lytic Models used in the examples in section 5 Investigations into Simalytic Modeling on

page 127. Each server uses the Simalytic Function in Figure 55 to implement the service

time for that server.

Figure 56 Three Server Simalytic Model

Figure 57 Four Server Simalytic Model

177

Figure 58 Eight Server Simalytic Model

178

7.4 Appendix D: MathCAD Queuing Formulae

Figure 59 MathCAD Worksheet for Queuing Theory Surface Plots presents the

MathCAD worksheet that defines the queuing theory function used to calculate the re-

sponse times for the surface plots in section 3.5.3 Validation of the Mathematical Foun-

dation on page 86. This worksheet also shows the MathCAD statements to use the

queuing theory function to generate data for both of the surface plots in section 3.5.3.

The WRITEPRN statements write the array on the right side of the assignment symbol (:=)

to the file name provided as a parameter. For readers not familiar with the MathCAD

program from MathSoft (MathSoft 1995), additional information is available in the user’s

guide for the current version of MathCAD.

The QueuingRT function returns a response time value when called with two pa-

rameters, arrival rate and service time. The function defined in Figure 59 was used for all

MathCAD queuing theory results. Both the service time and the arrival rate are a series of

values calculated from the respective indices. The function is defined to return only posi-

tive response times. The calculated time goes negative when the server is saturated and

ArrivalRateIndex:= 0..100
QueuingRT(a_rate, s_time) rt ←

s_time

(1 - a_rate s_time) + .00000001

rt if rt > 0

∝ if rt ≤ 0

∝ otherwise

ServiceTimeIndex := 0..100

AllResponseTimes
(ArrivalRateIndex, ServiceTimeIndex)

QueuingRT(ArrivalRateIndex .1 +.01, ServiceTimeIndex + .1

ResponseTimesSubSet
(ArrivalRateIndex, ServiceTimeIndex)

QueuingRT(ArrivalRateIndex .01 +.01, ServiceTimeIndex + .1

WRITEPRN(SPData3a) := AllResponseTimes WRITEPRN(SPData3s) := ResponseTimesSubSet

Figure 59 MathCAD Worksheet for Queuing Theory Surface Plots

179

the function returns infinity to show this. Because of MathCAD rounding of intermediate

values, a small value is added to avoid a divide by zero error.

