
52

3. Simalytic Modeling Methodology

3.1 Overview

“Simalytic” (Simulation/Analytic) ModelingTM 2 is a hybrid modeling technique.

The methodology uses a general purpose simulation modeling tool as an underlying

framework and the results of an analytic modeling tool to represent the individual nodes or

systems. The goal of a Simalytic Model is to predict the capacity requirements of an ap-

plication executing on heterogeneous computer systems by creating an enterprise level ap-

plication model.

The two key differences between the existing modeling techniques and the Sima-

lytic Modeling technique are interoperability and reuse. The first, interoperability, is the

capability to use the results from not only a different tool, but a different modeling tech-

nique altogether, as a submodel within an enterprise model. The second, reuse, is the ca-

pability to use the results from tools or techniques already being used to model individual

nodes in the system. These differences reduce the time and effort to build an enterprise

level model by using the results from commercially available platform-centric tools or ex-

isting detailed application models.

3.2 Methodology

Simalytic Modeling brings together existing performance models and application informa-

tion. One of the problems with queuing theory is the reliance on averages, such as aver-

age response time, average service time and average arrival rate. The goal of Simalytic

Modeling is to model the application over longer periods of time to understand the appli-

2SimalyticTM, Simalytic ModelingTM, Simalytic Modeling TechniqueTM and Simalytic Enterprise ModelingTM are trademarked by Tim R. Norton.

53

cation dynamics without increasing the error due to greater variation in the data items

used for the above averages. When using commercial queuing theory tools, it is generally

understood that shorter intervals3 usually produce better model results because there is

less variation in the measurement data. The node model can produce very accurate re-

sponse time predictions when built with a queuing theory tool using a short data collection

interval to minimize the variability in the data.

Simalytic Modeling also provides a useful technique for modeling the behavior of a

single system application over very long periods of time. Because the variation in the arri-

val rate distribution increases as the model interval increases, such long interval models are

generally implemented using simulation tools. However, the capacity planning modeling

tool of choice has generally been a platform-centric queuing theory tool. Creating an en-

tirely new model of the application in a different tool is seldom cost effective and therefore

seldom done. Using the Simalytic Modeling Technique, the modeler only creates a very

simple simulation framework model to drive the single node (most likely from trace data)

that has been implemented using a Simalytic Function. The majority of the work in con-

structing the Simalytic Model would involve using the queuing theory tool already used to

model the system. Thus a Simalytic Model would provide a higher level of understanding

of the dynamics of an application over time that would not be cost effective using other

techniques.

3 In this context, ‘interval’ refers to the time period for which measurement data was collected to be used in building a model. Interval
selection is the analysis of all available measurement data to determine the interval that is most representative of the application situation to
be modeled.

54

3.2.1 Methodology Assumptions

Simalytic Modeling is not a technique for collecting data or measuring systems or

applications. There are several underlying assumptions that must be true before the Si-

malytic Modeling technique can be used:

• The definition of each workload to be modeled must be consistent across all

the models used, including all the nodes where each workload executes and the

simulation model framework. Therefore, all assumptions used for each of the

node level models must be consistent with all of the other node models and

must be included in the simulation framework model. For example, assume the

Order Entry workload on the Order Entry system is defined as transactions

OE1 and OE2 from any user and that the OE2 transactions are routed to Ship-

ping. The Order Entry workload on the Shipping system must also use the

same definition; it cannot include any other transactions or exclude any users.

The simulation framework model must route the OE2 transactions to Shipping.

It cannot route OE1 transactions and any measurement data from the Shipping

system must not contain any OE1 transactions.

• The applications to be modeled at the enterprise level must be understood at

the enterprise level, which includes transaction arrival distributions. As in the

above example, the application must be well enough understood to know not

only the percentage of transactions that access the Shipping server, but also if

those accesses are generated by only the OE1 transaction or by both the OE1

and OE2 transactions (and the respective percentages).

55

• A valid model must exist for each system or node to be included in the appli-

cation enterprise model. The node models must be proven to produce accurate

predictions, within an acceptable error range, for the application being mod-

eled. The accuracy of the overall Simalytic Model will be reduced as the com-

plexity or the heterogeneousness of the individual node models increases. For

example, data collected for a single workload composed of very similar trans-

actions distributed evenly over the data collection interval will produce a very

accurate and reliable model of that application on that system. However, the

results produced by the node model will be much less accurate if the node

model must provide results for several different workloads or there is wide

variation in the characteristics of the transactions in the workload.

• The simulation tool selected for the enterprise model framework must support

submodels, must be able to invoke external functions and must support the

modeling of individual transactions.

The model builder must understand the applications and the individual systems in

the enterprise (or have access to others with such understanding) before they can be put

together into an enterprise level model. Using the example from section 1.6.3

Client/Server Environment on page 16, the relationship between the Order Entry transac-

tions and the Shipping system must be understood and measurable. If the model builder

does not have any information about which transactions send requests to the Shipping

system, he cannot build a model that matches the application. Once the application is un-

derstood, the model builder must know how each system reacts to different transaction

loads. How this information is developed will vary across the different nodes depending

56

on particulars such as the hardware, the operating system and the level of data collection.

Techniques for developing a look-up table of valid response time predictions for each

node include:

• collecting measurement data at different transaction rates,

• using platform-centric modeling tools or

• calculating expected response times based on benchmarks.

The fully implemented Simalytic Modeling tool would integrate a platform-centric

queuing theory model into the simulation tool by replacing the submodels for individual

systems with calls to the queuing theory model tool.

3.2.2 Methodology Process

Once the model builder has all the fundamental information, an enterprise level

model can be constructed. The simplest way to do this is to construct a very high level

simulation model of the enterprise where each system, or node, is a single server capable

of unlimited parallelism. Then, instead of using a pre-defined service time, each server

would use a transform function that maps the transaction arrival rates to service times. In

the enterprise model, the service time and the response time for each server will be the

same because the queue time is accounted for in the response time for the server. The

transform function will increase the node service time as the arrival rate at that node in-

creases to have the same effect as a constant service time plus queue time. Each node in

the simulation model must allow enough parallelism to avoid queuing to enter the node

because such queuing is already accounted for in the submodel response time. Additional

queuing in the simulation framework would not be an accurate reflection of the actual

system for those nodes where the transform function has been implemented. Other model

57

elements, such as networks or delay servers, and servers not implemented with a transform

function are implemented as standard nodes in the simulation model. This also applies to

any node implemented with a transform function where the response time data used to

create the transform function does not include queuing to enter the node. Such cases re-

quire extra care to insure that any queuing in the simulation model reflects only queuing

not accounted for in the value returned by the transform function.

Continuing with the same example, some number of the Order Entry transactions

would be routed to the Shipping server. Assume it has been determined that Shipping can

provide a response time of one second when arrivals are less than three per minute and a

response time of two seconds when arrivals are more than three per minute. When the

Order Entry transaction arrival rate increases such that more than three per minute are

sent to Shipping, the response time will jump from one to two seconds. This is a very

simple example, but it illustrates the point. The increased service time at Shipping will

cause the overall response time for those transactions to increase, which will be seen as a

longer average response time or reduced throughput for the application.

Figure 7 Simple Enterprise

Model shows a diagram of this model.

The response time is measured from

Arrivals to Departures, either through the

Shipping node or around it. If there is a

limit on the number of transactions that

can be active in the Order Entry system at any given time, then there could be some

queuing to get into the system. This would represent a user’s workstation waiting to send

Arrivals

Departures

Order Entry

1 sec

Shipping

1 sec if < 3 / min
2 sec if > 3 / min

Figure 7 Simple Enterprise Model

58

the transaction to the server. This example shows how the Simalytic Model connects

what is happening in the application on the different servers. If the Order Entry system is

modeled by itself, the workload representing the long Order Entry transactions (i.e. those

that are sent to Shipping) would not reflect the increased response time due to the load at

Shipping. Because of the additional application information in the Simalytic Model, it

could adjust the service time in the Order Entry server by replacing the measured wait

time component of the response time with the projected delay from the Shipping server.

This is a level of detail beyond the initial discussion of Simalytic Modeling in this paper,

but the technique lends itself to this type of extension.

The next question is “how does the Shipping server node in the model know what

arrival rate to use for a single transaction?” An arrival rate must be calculated for each

transaction based on the current level of activity. In this example, the load is determined

by calculating the arrival rate from a moving average of the prior two transaction interarri-

val times, which acts as a smoothing function. This arrival rate is used in a transform for-

mula similar to the one shown in section 3.3 Foundation on page 61. If the average

interarrival time is less than 20 seconds, then the average arrival rate to account for that

interarrival time would have to be

greater than three per minute. If the

average interarrival time is longer

than 20 seconds, then the average

arrival rate would have to be less

than three per second. Therefore,

0.0

1.0

2.0

0 50 100 150 200 250 300 350 400
Relative Arrival Time (Seconds)

R
es

po
ns

e
Ti

m
e

Transactions
Moving Average

Moving
Average

Figure 8 Shipping Transaction Arrivals

59

knowing the average interarrival time over a small number of transactions, the model can

calculate an arrival rate at each server that represents the current activity. (In this context,

current means a period of time just prior to the transaction being serviced that is relatively

small as compared to the total overall time of the model interval.) Figure 8 Shipping

Transaction Arrivals shows the actual transactions and their respective response times.

When the transaction arrivals are close together the response time is high and when the

arrivals are further apart the response time is low. The line labeled Moving Average shows

the response time derived from using the moving average of the prior two interarrival

times. (Two interarrival times is an extremely small sample used only for illustration. A

larger sample, sized appropriately for the workload, would be used in real modeling situa-

tions.) This average tends to incorrectly predict the response time of the first transaction

in each group of lower activity, but provides a better workload profile that using the aver-

age of all interarrival times (17.39), which would return a response time of 1.0 for all

transactions. This smoothing allows the Simalytic Model to account for variability in the

arrival rate that causes changes in the node level response times due to changes in the load

at the node. Variability in the service times of devices within the nodes is accounted for in

the node level models and is reflected in the different response times at the different loads.

The next step is to analyze the model using the business objectives. Assume that

the manager of the Order Entry department has requested a model to determine when the

Order Entry system will need to be upgraded in order to maintain the required response

time of less than 1.7 seconds. The OE arrival rate is assumed to have a constant increase

over the next 18 months (the scope of the analysis) and the percent of the Order Entry

transactions that must also query the Shipping system is assumed to be 30%. The re-

60

sponse time goal for the Shipping system is less than 10 seconds (because these transac-

tions generally do not involve a waiting customer) and this long response time is accept-

able. The objectives of the analysis are to answer two questions: “When does the Order

Entry system fail to meet the business response time goal?” and “What Order Entry system

upgrade is needed to fix the problem?”

 Figure 9 Model Results Analysis shows the hypothetical results of this example

model. When each of the systems are analyzed independently, neither of the response

times ever approach the business goal of 10 seconds for the Shipping transactions and 1.7

seconds for the Order Entry transactions. However, when the relationship between Ship-

ping and Order Entry is added to the chart in the form of results from a Simalytic Model,

the revised Order Entry response times show that the system will need to be upgraded by

year end, well within the scope of the analysis. In addition, the ‘fix’ to the problem is to

Model Results Analysis

0.0

0.5

1.0

1.5

2.0

2.5

1/
1/

96

1/
29

/9
6

2/
26

/9
6

3/
25

/9
6

4/
22

/9
6

5/
20

/9
6

6/
17

/9
6

7/
15

/9
6

8/
12

/9
6

9/
9/

96

10
/7

/9
6

11
/4

/9
6

12
/2

/9
6

12
/3

0/
96

1/
27

/9
7

2/
24

/9
7

3/
24

/9
7

4/
21

/9
7

5/
19

/9
7

6/
16

/9
7

7/
14

/9
7

Date

R
es

po
ns

e
Ti

m
e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

A
rr

iv
al

 R
at

e
(T

ra
ns

ac
tio

ns
 p

er
 S

ec
on

d)

Order Entry

Shipping

OE Response Time
Goal

Shipping Response
Time Change

OE Simalytic

Arrival Rate

Shipping response
time change at 3
arrivals/minute

Order Entry
response time
average exceeds
goal

Figure 9 Model Results Analysis

61

upgrade the Shipping system, which never exceeds its response time goal. The Simalytic

Model allows the analyst to see the impact of relationships that, although known, may not

be full appreciated.

3.3 Foundation

The above example shows how simulation and analytic modeling techniques can

work together, but it does not prove that the Simalytic Modeling technique is viable. To

do that we need to look at the mathematical formulae behind the two techniques and how

they are combined into the Simalytic Modeling formula shown in Equation 3 Simalytic

Response Time Formula by using a transform function. As the framework for a Simalytic

model is a simulation model, we start with the simulation response time formula shown in

Equation 2 Simulation Response Time Formula on page 35, which is a summation of all

of the server response times divided by the number of transactions to get the average re-

sponse time. The server time from each transaction iteration (Ti) is replaced with a trans-

form function f (λi), where i is the

iteration index and λi is an arrival

rate input to the transform function

for that iteration.

The arrival rate is calculated

from the prior interarrival times to

provide a smoothing function

across the modeling interval. This

allows the arrival rate used as a pa-

Equation 3 Simalytic Response Time Formula

T
f

n

f

b
c c w

c

ii

n

t

i

i
i i w

i

t

=

=
−

=

−

∑ ()

() /

λ

λ

λ

1

where:
 = a transform function
 = arrivals per second as:

 = simulation clock value
 = simulation clock ticks per second
= number of transactions in averaging window:

 for rolling average: when , then
 for cumulative average:

b
w

w > i w = i
w = i

62

rameter to the Simalytic Function to be an average arrival rate, which is appropriate for

use with the queuing theory formula, but still localized to the current transaction, which is

appropriate for use with the simulation formula. The arrival rate is calculated from the

interarrival times by dividing the number of simulation clock ticks per second (b) by the

difference in the simulation clock value for the current iteration and a prior iteration (ci -

ci-w) divided by the number of transactions between the current iteration and the prior it-

eration (w) as shown in Equation 3. There are two special cases for w. When a rolling

average is desired, w must be set equal to i for those iterations where w>i, which provides

a cumulative average for the first w iterations. When a cumulative average is desired, w

must be set equal to i for all iterations.

The transform function f is used to transform an arrival rate into a service time

which is based either on the results of an analytic response time formula similar to the one

in Equation 1 on page 32 or on the results of a platform-centric analytic tool. The trans-

form function is a step function whose output (response time) either remains constant or

increases as the input (arrival rate) increases. The service time returned by the transform

function represents the response time for that node given the current load (expressed as

the arrival rate) and any other conditions at the node that impact response time. It may be

a known and understood formula, as in the case of Equation 1, or it may be the results

derived from proprietary algorithms implemented in a commercial tool. The use of such a

tool allows a model builder to concentrate on the enterprise view of the application be-

cause the system level model has already been calibrated. The transform function can be

implemented directly by invoking a submodel to calculate and return the response time

based on λi. Or, it can be implemented indirectly by creating a look-up table of the results

63

of an analytic formula or tool that has been invoked at some other time for some subset of

the expected values for the λi's. In addition, the transform function can be enhanced to

utilize other information known about the node at the time the transaction arrives, such as

queue lengths, resource consumption by other workloads and recent historical perform-

ance. Such a complex function would require additional inputs as it would then no longer

be a function of only the arrival rate. The simulation model invokes a submodel that re-

turns the response time appropriate for the λ passed as a parameter. In an actual imple-

mentation, the simulation tool can consider other information that is not passed as a

formal parameter. Although a formula could be devised to replace the look-up table, us-

ing a table will be more practical than using an analytic tool that must be invoked for each

arrival rate to be investigated. However, if the Simalytic Modeling technique becomes

widely accepted, then the analytic tools could be modified to produce such a formula in-

stead of response time reports.

Figure 10 Interarrival Time

Example shows an example of how an

average arrival rate can be calculated

from the interarrival times between

transactions. In the figure, t repre-

sents a transaction, i represents the

transaction index, c represents the

simulation clock and w represents the

number of interarrival times to include in the average. The i th transaction (ti) arrives at

the clock value of ci, which is considered the clock for the i th transaction. The average

10 11 12 13 14 15 16 17
Simulation Clock (c)

t i-2

t i

t i-1ir i-1

ir i

a i-2 d i-2

a i-1

a i

d i-1

t=transaction, a=arrival, d=departure, ir=interarrival time

Figure 10 Interarrival Time Example

64

arrival rate is calculated over the transaction window (w) of prior transactions. Therefore,

the accumulative interarrival time for all transactions in the window starts at the arrival of

the w th prior transaction (ai-w) and is calculated as the clock value at ai (ci) minus the clock

value at ai-w (ci-w). As an example, if w = 2, ai = ci =16, and ai-w = ci-w =11, then the cumu-

lative interarrival time would be 5 (ai - ai-w = 16 - 11 = 5) and the average interarrival time

would be 2.5 (5/w = 5/2 = 2.5). If there are six clock ticks per second, then the average

arrival rate used for the i th transaction (λi) would be 2.4 transactions per second

(6/2.5 = 2.4).

Once the arrival rate is calculated, the transform

function (f) is called with the arrival rate input for that

transaction (λi). The transform function provides a

step function approximation of the results of the queu-

ing theory formula Equation 1 Analytic Response Time

Formula on page 32 to a greater or lesser degree, de-

pending on the complexity designed into f. Figure 11

Simalytic Function shows a hypothetical example of the relationship between this trans-

form function (the short broken line) and the results of Equation 1 Analytic Response

Time Formula on page 32 (the solid line) and the results of Equation 2 Simulation Re-

sponse Time Formula on page 35 for each of a series of simulations at different arrival

rates (the long broken line). The relationship between these three techniques is evident by

how well they track each other. Even with only a single simulation execution for each ar-

rival rate and only five values in the transform function look-up table, the graph of the re-

Queuing Theory
Simalytic Function
Simulation

Arrival Rate

R
es

po
ns

e
Ti

m
e

Figure 11 Simalytic Function

65

sults appears to show a high correlation between the three techniques, which provided the

initial encouragement for this research.

The transform function is a key principle to Simalytic Modeling because it provides

the bridge between the two types of models (simulation and queuing theory). The calcu-

lation of an arrival rate provides the input for the transform function which returns a re-

sponse time output based on a queuing theory submodel. One of the assumptions for

Simalytic Modeling (see section 3.2.1 Methodology Assumptions on page 54) discusses

the importance of using only results from validated node models in the Simalytic Model.

The ability to use arrival rates calculated from subsets of the interarrival times of all trans-

actions is valid because the transform formula for each node returns results that have al-

ready been proven to produce acceptable predictions for the loads represented by those

arrival rates. The arrival rate calculated from a subset of the interarrival times is really a

way of segmenting the model interval and obtaining the arrival rate that would cause the

given response time in a steady state over each segment. Each arrival rate will already be

validated as part of the construction of the node level model.

Even assuming a best case situation where the interarrival times of the actual

transactions are uniform (no variation), there would still be variation in the response times

due to variation in the workload (different transactions, different calculations, different

logical path, etc.) and due to variations in the device service times (CPU cache and pipe-

line, disk cache and rotation, interference from higher priority workloads, etc.). When

using any queuing theory model, an assumption is accepted that the predicted results rep-

resent the workloads being investigated even though they are averages based on the aver-

age of each of the parameters over the data collection interval. This is similar to the FESC

66

(flow-equivalent service center) decomposition technique discussed in (Menascé, Almeida,

and Dowdy 1994), used for solving complex queuing theory models. The system to be

modeled is divided into parts that can each be analyzed and solved independently. Each

part is then replaced with a single server that is representative of the flow through that

part of the system. One of the main points in each of the discussions (Menascé, Almeida,

and Dowdy 1994, 163-7 and 236-9) is that the FESC must be solved independently and

must maintain the ‘flow’ of the overall model (i.e. the behavior of each FESC must be al-

most indistinguishable from the subsystem it replaces). The subsystem model is solved to

obtain the subsystem throughputs as a function of multiprogramming level (for closed

models) or the subsystem response times as a function of arrival rate (for open models).

The FESC is then substituted for the subsystem in the overall model using the function to

describe the subsystem’s behavior. (Menascé, Almeida, and Dowdy 1994, 236) cites

(Chandy and Sauer 1978) that the flow-equivalent method yields exact results when ap-

plied to closed single class product form models and cites (Cortois 1975) that little error is

introduced if the transition rate within the submodel is much greater than the interaction

rate between the submodel and the overall model (which will necessarily be the case when

the submodel represents an entire independent system or node).

Equation 3 only calculates the response time for a single workload on a single

server. The response times for additional workloads and servers would be calculated the

same way. The average system response time could then be calculated by adding the re-

sponse times together based on the probability of each workload visiting each server. As

can be seen by this simple example, the calculations will quickly grow out of hand. To

avoid this, the Simalytic Modeling Technique uses existing simulation and queuing theory

67

tools together to implement a Simalytic Model. In addition, the simulation tools allow

transactions to be assigned attributes that can contain application design information not

available in the measurement data.

3.4 Development of Foundation

The discussions in sections 2.2.1 Analytic Queuing Theory on page 30, 2.2.2

Simulation on page 34, and 3.2 Methodology on page 52, addressed only single server

situations. This section expands on the formulae presented in those sections to show that

the technique is viable for additional servers. Several different enterprise system topolo-

gies are investigated and the mathematical formulae to calculate the overall system re-

sponse time is developed for each topology:

• The single server system as discussed in the earlier sections (reproduced here

for the convenience of the reader).

• A two server system where all transactions visit both servers.

• A two server system where transactions are forked and each image of the

transaction visits each server in parallel.

• A two server system where transactions are routed to a server based on some

probability.

• A three server system where transactions are routed to a server based on some

probability.

• A four server system where transactions are routed to a server based on some

probability.

• A generalized n-server system where transactions are routed to a server based

on some probability.

68

It is assumed that these scenarios (single server, series of servers, fork/join and

probability routing) represent all of the most likely scenarios needed to model an applica-

tion at the enterprise level and that any other scenarios can either be simplified to one of

these or discounted as extremely unlikely. The percentages of transactions routed to each

server in each of the routed scenarios are all positive values such that their sum is equal to

1 (100%). Each individual percentage must be in the range of 0 to 1 (0% to 100%). The

arrival distribution at each server is assumed to be Poisson. Only the servers will be ad-

dressed in these scenarios because it has been shown that, based on Poisson distributions,

the arrival rate at a server from multiple sources (i.e. workstations) is the sum of the arri-

val rates generated by each source and that the arrival rate at one of multiple servers from

a single source is the original rate times the probability that server will be selected

(Kobayashi 1981, 103-5; Pooch and Wall 1993, 342-3).

This section also shows that each of these scenarios can be represented by the for-

mulae used for either a series or a multi-server system with probability routing. Because

the other scenarios are equivalent to one of these formulae, the number of scenarios in-

vestigated in the following sections, 4 Simalytic Model Development on page 97 and 5

Investigations into Simalytic Modeling on page 127, are greatly reduced.

69

3.4.1 Mathematical Formulae

Each of the figures in this section shows a graphical diagram for one of the above

scenarios with the queuing theory response time formula (top), the simulation response

time formula (middle) and the Simalytic response time formula (bottom) for that scenario.

The following legend applies to all of the figures in this section:

s = The total number of nodes (servers) in the system.
x = Any one of the s nodes.
T = The average response time for all transactions in the system.
Tx = The average response time for all transactions that visit node x. The sub-

script i denotes the response time for the ith transaction to be serviced by
that node, such as: T2i would be the response time of the ith transaction at
node 2.

Sx = The service time for node x. This is the total time to process a transaction
at the server, or node, without any queue time.

nt = The total number of transactions processed by the system.
px = The probability that a transaction will take the route to server, or node, x.

In all cases p must meet the conditions: 0 ≤ px ≤ 1 and p1 + p2 + … ps = 1.
This insures that all of the transactions visit one of the servers and that no
transactions visit any server more than once.

λ = The arrival rate of transactions into the system.
fx(λxi) = The transform function for node x as discussed in section 3.3 Foundation on

page 61 which always returns a value equivalent to Txi.
MAX = A function that returns the largest of the parameters.

70

3.4.1.1 Single Server System

The first formula to be discussed is for the single server system shown in Figure 12

Single Server System. All three of the formulae are the same as those presented earlier

and are shown here in the same format that is used to discuss the other formulae. In this

case, the system response time is the same as the server response time.

System
1

Arrivals Departures

T T T
S

S
= =

−1
1

11 λ

T T T
T

n
ii

n

t

t

= =














=∑
1

11

T T T
f

n
ii

n

t

t

= =














=∑
1

1 11
()λ

Figure 12 Single Server System

71

3.4.1.2 Two Server System

Figure 13 Simple Two Server System shows a simple system consisting of two

servers, or nodes, where each transaction visits each node in series. The overall response

time is the sum of the response times of each of the servers. Using the concept of a FESC

(flow-equivalent service center) decomposition technique (Menascé, Almeida, and Dowdy

1994) discussed earlier in this section, a two server system can be simplified to a single

server system like the one shown in Figure 12. This simplification allows any series of

servers to be represented by a single FESC server because the series can be simplified, two

servers at a time, until only a single server remains. Therefore, no additional formulae for

other systems consisting of a series of servers are developed in this section.

System
1

System
2

Arrivals
Departures

T T T T
S

S
S

S
= + =

−
+

−1 2
1

1

2

21 1λ λ

T T T T
T

n

T

n
ii

n

t

ii

n

t

t t

= + = +














= =∑ ∑
1 2

11 21

T T T T
f

n

f

n
i

t

i

t

i

n

t

i

n

t

= + = +














= =∑ ∑
1 2

1 11 2 21
() ()λ λ

Figure 13 Simple Two Server System

72

3.4.1.3 Fork/Join System

Figure 14 Two Server System with Fork/Join Routing shows a system consisting

of two servers, or nodes, where each transaction visits each node in parallel. The transac-

tion is reproduced or split in such a way that identical copies are sent to each server at the

same time. The overall response time is the greater of the response times of each of the

servers. Because the individual transaction identity is not preserved in a queuing theory

model, fork/join routing cannot be calculated using queuing theory. A queuing theory

model can only approximate the response time in this situation by calculating the overall

response time independently for each server and using the larger of the response times. In

addition, the fork/join routing system cannot be simplified to a single node because of the

relationship between the service times of the parts of a forked transaction.

Fork/join systems are not considered further for two reasons. First, the formulae

System
1

System
2

Join
Fork

Arrivals
Departures

T Cannot be calculated with queuing theory=

T
M A X T T

n
i ii

n

t

t

= =∑ (,)1 21

T
MAX f f

n
ii

n

i

t

t

= =∑ ((), ())1 11 2 2λ λ

Figure 14 Two Server System with Fork/Join Routing

73

shown in Figure 14 cannot be cross-checked against each other because there is no

queuing theory solution. Second, the use of fork/join routing is assumed to be an unusual

situation in actual client/server implementations. Therefore, investigations into the be-

havior of fork/join routing systems is deferred as an area for future research.

74

3.4.1.4 Two Server Routing

Figure 15 Two Server System with Probability Routing shows a system consisting

of two servers, or nodes, where each transaction visits one of the servers depending on

some probability. The overall response time is the sum of the response times of each of

the servers weighted by the probability of visiting that server. This type of system is usu-

ally thought of as a routing system where each transaction visits one or the other of the

servers.

The remaining sections briefly examine adding additional servers to produce a

three server (section 3.4.1.5) and a four server (section 3.4.1.6) system. The final section

(3.4.1.7) shows a generalized multi-server system with probability routing that can be used

to represent all probability routing systems, including the two server system shown in

Figure 15.

System
1

System
2

Arrivals Departures

Probability
p1

Probability
p2

0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1, p1+ p2 = 1

T p T p T T
p S
p S

p S
p S

= + =
−

+
−1 1 2 2

1 1

1 1

2 2

2 21 1λ λ

T p T p T T
T

p n

T

p n
ii

p n

t

ii

p n

t

t t

= + = +














= =∑ ∑
1 1 2 2

11

1

21

2

1 2

T p T p T T
f

p n

f

p n
i

t

i

t

i

p n

t

i

p n

t

= + = +














= =∑ ∑
1 1 2 2

1 11

1

2 21

2

1 2() ()λ λ

Figure 15 Two Server System with Probability Routing

75

3.4.1.5 Three Server Routing

Figure 16 Three Server System with Probability Routing is similar to Figure 15

but it shows a system consisting of three servers, or nodes, where each transaction visits

one of the servers depending on some probability. The overall response time is the sum of

the response times of each of the servers weighted by the probability of visiting that

server. Therefore, the addition of the third server consists of adding the proportional re-

sponse time component for the new server to the proportional response times of the other

servers.

System
1

System
2

Arrivals Departures

Probability
p1

Probability
p2

0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1, 0 ≤ p3 ≤ 1, p1+ p2+ p3 = 1

System
3

Probability
p3

T p T p T p T T
p S
p S

p S
p S

p S
p S

= + + =
−

+
−

+
−1 1 2 2 3 3

1 1

1 1

2 2

2 2

3 3

3 31 1 1λ λ λ

T p T p T p T T
T

p n

T

p n

T

p n
ii

p n

t

ii

p n

t

ii

p n

t

t t t

= + + = + +














= = =∑ ∑ ∑
1 1 2 2 3 3

11

1

21

2

31

3

1 2 3

T p T p T p T T
f

p n

f

p n

f

p n
ii

p n

t

ii

p n

t

ii

p n

t

t t t

= + + = + +














= = =∑ ∑ ∑
1 1 2 2 3 3

1 11

1

2 21

2

3 31

3

1 2 3() () ()λ λ λ

Figure 16 Three Server System with Probability Routing

76

3.4.1.6 Four Server Routing

Figure 17 Four Server System with Probability Routing is similar to Figure 15 but

it shows a system consisting of four servers, or nodes, where each transaction visits one of

the servers depending on some probability. The overall response time is the sum of the

response times of each of the servers weighted by the probability of visiting that server.

Therefore, the addition of the fourth server consists of adding the proportional response

time component for the new server to the proportional response times of the other servers.

System
1

System
2

Arrivals Departures

Probability
p1

Probability
p2

0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1, 0 ≤ p3 ≤ 1, 0 ≤ p4 ≤ 1, p1+ p2+ p3+ p4 = 1

System
3

Probability
p3

System
4

Probability
p4

T p T p T p T p T T
p S
p S

p S
p S

p S
p S

p S
p S

= + + + =
−

+
−

+
−

+
−1 1 2 2 3 3 4 4

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 41 1 1 1λ λ λ λ

T p T p T p T p T T
T

p n

T

p n

T

p n

T

p n
ii

p n

t

ii

p n

t

ii

p n

t

ii

p n

t

t t t t

= + + + = + + +














= = = =∑ ∑ ∑ ∑
1 1 2 2 3 3 4 4

11

1

21

2

31

3

41

4

1 2 3 4

T p T p T p T p T T
f

p n

f

p n

f

p n

f

p n
ii

p n

t

ii

p n

t

ii

p n

t

ii

p n

t

t t t t

= + + + = + + +














= = = =∑ ∑ ∑ ∑
1 1 2 2 3 3 4 4

1 11

1

2 21

2

3 31

3

4 41

4

1 2 3 4() () () ()λ λ λ λ

Figure 17 Four Server System with Probability Routing

77

3.4.1.7 Generalized Multi-Server Routing

Figure 18 Generalized Multi-Server System with Probability Routing is similar to

Figure 15 but it shows a system consisting of an unspecified number of servers, or nodes,

where each transaction visits one of the servers depending on some probability. The over-

all response time is the sum of the response times of each of the servers weighted by the

probability of visiting that server. Therefore, as shown in the above sections (3.4.1.5 and

3.4.1.6), the addition of another server consists of adding the proportional response time

component for the new server to the proportional response times of other servers. Any

number of servers can be added by starting with the two server formulae shown in Figure

System
1

System
2

Arrivals Departures

Probability
p1

Probability
p2

0 ≤≤ px ≤≤ 1, p1+ p2+ ... + ps = 1

System
s

Probability
ps

.

.

.

T p T p T p T T p S
p S

p S
p S

p S
p Ss s
s s

s s

= + + + =
−

+
−

+ +
−1 1 2 2

1 1

1 1

2 2

2 21 1 1
... ...

λ λ λ

T p T p T p T T
T

p n

T

p n

T

p ns s

ii

p n

t

ii

p n

t

s ii

p n

s t

t t s t

= + + + = + + +














= = =∑ ∑ ∑
1 1 2 2

11

1

21

2

1

1 2

... ...

T p T p T p T T
f

p n

f

p n

f

p ns s

ii

p n

t

ii

p n

t

s s ii

p n

s t

t t s t

= + + + = + + +














= = =∑ ∑ ∑
1 1 2 2

1 11

1

2 21

2

1

1 2

...
() ()

...
()λ λ λ

Figure 18 Generalized Multi-Server System with Probability Routing

78

15 and adding one more server until the desired number of servers is represented in the

system. This can be viewed as the opposite of simplification using FESC where a single

server is considered a submodel and decomposed into its server components.

The formulae shown in Figure 18 can be used to represent all of the formulae pre-

sented above other than a series of systems, which is represented by Figure 13. The prob-

ability is set to zero for all servers not present in the system being examined. When a

transaction can be routed between a group of x servers, the sum of the probabilities for

that group is always equal to one (100%) because all transactions must visit one, and only

one, of the servers in the group.

3.4.2 Formulae Significance

The formulae discussed in section 3.4.1 Mathematical Formulae, on pages 69-78,

are important to the proof of the hypothesis because they show both a formal relationship

between the different modeling techniques and a formal relationship between the formulae

and the concept of a FESC (flow-equivalent service center). The relationship between the

techniques is evident in the simple examples provided, where each of the models can be

solved by each of the techniques, because each of the formulae calculate the same value,

the average response time, for each model. The following section, 3.5 Validation, ex-

pands on the ideas presented in this section by implementing these formulae using a

mathematical language and shows the validity of this relationship with actual formulae re-

sults. Although not intended as a proof of the FESC decomposition technique (Menascé,

Almeida, and Dowdy 1994), this discussion also shows how this well-established tech-

nique can be applied to each of the three modeling techniques. The formulae provide a

solid foundation for the development and presentation of the remaining results.

79

3.5 Validation

3.5.1 Validation Overview

Simalytic Models must be validated at two levels. First, each model used for a

system or node in the enterprise must be validated and calibrated for that system. This

means not only that the response time versus load (arrival rate) relationship is valid for all

arrival rates seen, but that it also holds across all of the possible arrival rates for all work-

loads likely to be generated by the enterprise model. If a submodel does not accurately

represent the “knee” in the response time curve of one of the systems, the enterprise

model will not accurately predict beyond that point. Second, because the Simalytic Mod-

eling includes a model of the relationships within the applications being modeled, meas-

urement data must be collected to validate those relationships. For example, if the model

from the earlier example shows 30% of the Order Entry transactions are routed to Ship-

ping, the model builder must collect the data to support that assumption.

Neither of these validation issues is easy. The first requires more effort than just

modeling individual systems because each system can influence the others. Other work-

loads on any of the systems can impact the applications being modeled. One system can

host more than one application being modeled at the enterprise level, which would require

the submodels to have information about how to calculate the response times for all such

applications. The second issue requires a level of understanding and documentation of

both the systems and the applications that many organizations simply do not have avail-

able. Most applications do not collect information about execution paths, spawned trans-

actions and client/server requests. In addition, many of the client/server systems today do

80

not collect enough, or sometime even any, detailed information about business transac-

tions even if they do collect information about database or OLTP transactions.

Simalytic Model validation requires more time and effort than the validation of

single system models. Until better cross-platform application measurement tools are in

place, the most promising validation technique appears to be the “model the past to pre-

dict the present” approach. Simply stated, this technique is applied after all other issues

are thought to be resolved. A model is built from measurement data collected from a dif-

ferent enterprise environment, generally at a lower transaction volume. Growth is then

applied to the model to see if it predicts what can be currently measured. If it can, then

there is confidence in the predictions of the future. If it cannot, the model must be revised.

Until measurement data is improved for many of the systems used in today’s client/server

environments, many situations will require the modeled changes to be implemented and

measured before they can be validated. Buzen discusses some of these issues of cli-

ent/server model validation and determines that shortcomings in the ability to collect de-

tailed measurement data does not preclude the usefulness of a client/server model. A

client/server model can be validated at whatever level is supported by the measurement

data and it is usable as long as it is only used to predict system performance at that same

level (Confrey 1996). His example illustrates that a valid model can be built using system

utilization when transaction measurement data is not available, but such a model cannot

then be used to predict transaction response times because it cannot be validated at that

level.

81

3.5.2 Verification/Validation Approach

Because of the issues discussed above (individual system models, relationships

between systems and measurement data collection), the approach used to show the valid-

ity of Simalytic Modeling is a comparison of the results of the Simalytic technique to the

results of the simulation technique rather than to a collection of measurement data. Veri-

fying that the results produced by this approach are consistent with the results produced

by pure simulation shows the approach to be valid for this type of problem. This approach

is similar to those used in (Ahn and Kim 1994) and (Thomasian and Gargeya 1984). The

comparisons use two strategies. The first is to compare the results of the mathematical

formulae and the second is to compare the results of models of representative hypothetical

systems implemented with actual modeling tools. This allows a set of assumptions to be

used for all of the comparisons of mathematical formulae results and a different, but con-

sistent, set of assumptions to be used for all of the comparisons of commercial simulation

tool results. The series of test cases was selected to show that the modeling techniques

produce equally acceptable enterprise model results within the bounds of reasonable usage

with either a theoretical (mathematical) or a practical (commercial tool) implementation.

By verifying the consistency of the results across what is assumed to be the entire range of

practical situations, Simalytic Modeling is shown to be a valid technique for solving that

set of problems.

3.5.2.1 Validation Approach Limitations

There are inherent limitations in the implementations of both a theoretical

(mathematical) strategy and a practical (commercial tool) strategy. Both the tools used to

implement each strategy, and the assumptions required to simplify each strategy enough to

82

allow a practical implementation, limit one’s ability to generalize the results of the strategy

to all practical client/server situations. However, the limitations of each strategy are ad-

dressed in the implementation of the other and it is therefore assumed that a consistency of

results across both strategies provides sufficient evidence to allow for such a generaliza-

tion.

Sections 3.4.1.1 through 3.4.1.7 use mathematical formulae to show how a system

can be simplified or decomposed using the concepts of submodels and FESC’s. The major

difficulty with using these mathematical formulae is that sub-components must be solved

in advance to allow the proper FESC’s to be constructed. For example, when simplifying

a fork/join subsystem, the response time of both servers must be known to allow the larger

one to be selected. In addition, this selection is based on some simplification of the re-

sults, such as the average of all response times for each server. The reality of the situation

may be that each server has the longer response time for some number of the transactions.

The actual response time of the subsystem may be longer that the average of either server

just as 5 (the average of 5 and 5) is larger than 4 (the average of 7 and 1) but the subsys-

tem average is 6; calculated as (7+5)/2=6. (The larger of the first two numbers, 7, is aver-

aged with the larger of the second two numbers, 5. The larger number is always selected

as the response time for a fork/join subsystem). The working assumption is that the for-

mulae represent the average of situations from a very large sample size and that the posi-

tive and negative differences will be equally distributed within the sample.

Probability routing systems have a similar limitation with the assumptions regard-

ing the values to use for the probabilities. The actual probabilities observed over short

periods of time may not be the same as the average for the entire sample period. Indeed,

83

the probabilities may start weighted toward one server and shift to be weighted toward the

other. The average will not represent such dynamics in the system. Again, the working

assumption is that the formulae represent the average of situations from a very large sam-

ple size and that the positive and negative differences will be equally distributed within the

sample.

These examples show the limitations of using a purely mathematical approach and

establish the need for the additional support of actual simulation models. These limitations

are easily corrected when implementing the model with commercial simulation tools,

which allow a level of control over the events within the simulation model comparable to

that of a programming language. Unfortunately, the flexibility and complexity inherent in

any programming language reduces the ability to provide a mathematical proof of correct-

ness that is desired to establish the conceptual foundation upon which to build a method-

ology. Such a foundation is provided by the mathematical formulae even with the

limitations discussed above. Section 3.5.3 Validation of the Mathematical Foundation on

page 86 analyzes the results of the mathematical formulae and section 4 Simalytic Model

Development on page 97 continues the analysis using commercial simulation tools.

3.5.2.2 Validation Approach Justification

The justification for using this approach to show the validity of Simalytic Modeling

is based on the success of the approach in other works investigating hybrid models. They

also show their techniques valid through the verification of consistent prediction compared

to simulation. Ahn and Kim compared the results of their hybrid modeling methodology

to the results of a discrete event simulation model and concluded “that there was little

difference between the two approaches.” (Ahn and Kim 1994, 5). They do not attempt to

84

prove that either model is an accurate representation of any real situations and assume that

the simulation model was valid.

Thomasian and Gargeya use a similar approach to validate their hybrid technique

for analysis of the performance of slotted ring multiprocessors (Thomasian and Gargeya

1984). They assume that the simulation model produces correct results and compare the

results of their technique to the results of the simulation model. They also use bounding

assumptions to limit the comparisons to a maximum of 32 processors, which is a reason-

able upper bound given the scope of their inquiry.

3.5.2.3 Validation Approach Assumptions

The following assumptions were used for determining that the series of test cases

selected are within the bounds of reasonable usage:

• The response time from any single node would be between 0.1 and 100 sec-

onds. Values outside this range, although possible, are not common in modern

transaction-based client/server systems. Transactions which complete in less

than 0.1 seconds are normally considered trivial transactions and generally do

not constitute a significant portion of a client/server workload because of the

small amount of productive work that can be accomplished in such a short

time. Transactions which complete in more than 100 seconds are normally

considered pseudo-batch transactions and are generally avoided because of the

business requirements in applications supporting end-users interactively. All

service times are assumed to be exponentially distributed.

• The mean arrival rate of transactions for an individual server is assumed to be

between an upper and lower limit set for each scenario based on the relation-

85

ship between the service time and the interarrival time. The upper limit is when

the mean interarrival time approaches the service time. Therefore, the arrival

rate upper limit is set by calculating the inverse of the service time times 0.99

to avoid a divide-by-zero condition. The lower limit is when the mean interar-

rival time is enough below the service time to cause minimal queuing and a

value of ten times the service time is assumed to meet this condition. There-

fore, the arrival rate lower limit is set by calculating the inverse of ten times

the service time. These bounds cover the range from 10% to 99% server utili-

zation, which is an acceptable range for a capacity planning model.

• The arrival rate bounds for the entire system in a given scenario should be set

to a reasonable range. The lower bound should be equal to the lowest bound

for any server in the system because anything lower would not produce any

significant queuing. The upper bound should be set no higher than the lowest

high bound for any server in the system because overall model results will not

be usable once a server saturates.

• Simalytic Model results within 10% of the results of the simulation model will

be considered equivalent. The generally accepted rule-of-thumb for capacity

planning modeling is that a model is a valid predictor of the capacity require-

ments of a system if its results are within 10% to 20% of the measured data.

Given this reasoning, a worst case of worst cases could produce a model be-

tween 72% and 132% of the measured data, which would still be considered a

usable, although not a good, capacity planning model. Even at the 20% devia-

tions level, a capacity planning model would be considered a high level ap-

86

proximation, such as server load, and not used for more detailed assessments,

such as transactions service time analysis. Additional modeling effort would be

required, regardless of the technique used, if there was a business need for

greater accuracy.

• The upper limit for the number of servers used to implement a single cli-

ent/server application is assumed to be eight servers. This assumption is based

solely on the author’s personal experience and opinion of what are practical

client/server application implementations. Advances in client/server application

design techniques that are not foreseeable today will allow larger numbers of

servers to be used. Then, as with any capacity planning technique, additional

testing and verification will be required. This assumption is made only to set

the scope of test cases and does not limit the concepts or theories underlying

Simalytic Modeling.

3.5.3 Validation of the Mathematical Foundation

The mathematical foundation discussed in section 3.3 Foundation on page 61 is

shown to be valid by comparing the results of each of the three formulae for each of the

scenarios discussed in that section. The formulae are implemented in MathCAD

(MathSoft 1995) and the results of each set plotted together to show the degree of con-

vergence. First, however, the scope of this analysis can be reduced by some simple inves-

tigations into the relationship between arrival rate and service time. To examine this

relationship further, a visual representation was created using three-dimensional surface

plots.

87

Figure 19 Queu-

ing Theory Single Server

Formula Plot shows a

surface area plot of the

results of the queuing

theory formula from

Figure 12 Single Server

System on page 70 for the

range of values discussed in the assumptions in section 3.5.2 Verification/Validation Ap-

proach. Although the assumptions seem quite reasonable, it is readily apparent from

Figure 19 that the majority of arrival rate/service time combinations exceed the 100 sec-

ond response time limit and, in fact, represent saturated servers. Further investigation

shows that there is actually a relatively small area where the response time is acceptable.

Figure 20 Queuing Theory Partial Results shows a close-up view of this area at a

higher granularity. The arrival rate is in the range of 0.01 to 0.5 transactions per second

and the service time is in

the range of 0.1 to 3.0

seconds. Rather than at-

tempt to model arrival

rate / service time combi-

nations that are known to

saturate the server, the set

0.
01

1.
01

2.
01

3.
01

4.
01

5.
01

6.
01

7.
01

8.
01

9.
01

 0.1

 10.1

 20.1
 30.1

 40.1
 50.1

 60.1
 70.1

 80.1
 90.1

 100.1

0

10

20

30

40

50

60

70

80

90

100

R
es

po
ns

e
Ti

m
e

(S
ec

on
ds

)

Arrival Rate
(Transactions / second)

Service Time
(Seconds)

Queuing Theory Formula Overview

Figure 19 Queuing Theory Single Server Formula Plot

0.01 0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.40 0.45 0.50

 0.1

 0.5

 0.9

 1.3

 1.7
 2.1

 2.5
 2.9

0

2

4

6

8

10

12

14

16

18

20

R
es

po
ns

e
Ti

m
e

(S
ec

on
ds

)

Arrival Rate
(Transactions / second)

Service Time
(Seconds)

Queuing Theory Formula Subset - Partial Data

Figure 20 Queuing Theory Partial Results

88

of models for each service time used arrival rates from slightly greater than zero to slightly

less than the inverse of the service time (because a model is known to be saturated when

the average interarrival time is equal to or greater than the service time). The service

times modeled were 0.1 to 5.0 in increments of 0.5 and 25.0, 50.0, 75.0 and 99.0. These

surface plots show a smooth transition between data points as either the arrival rate or

service time increases, which indicates that a reasonable sampling of arrival rate / service

time combinations is appropriate. The MathCAD worksheet used to generate the data for

these plots is listed in 7.4 Appendix D: MathCAD Queuing Formulae on page 178.

The objective in creating the models using a series of service times is to show a

consistent relationship between the different modeling techniques (simulation, queuing

theory and Simalytic Modeling) for each of the service times. The surface plots show that

there is a consistent relationship between service times for each of the techniques and that

it is reasonable to assume that service times not modeled would show similar behavior.

89

Figure 21 Example Formulae Comparison shows two examples of the comparison

of the three formulae, the top one at a low service time of 0.1 seconds and the bottom one

at a high service time of 2.5 seconds (low and high are relative to the area shown in

Figure 20). A complete set of charts, showing service times from 0.1 to 99.0 can be

Formulae Relationships - Service Time 0.1

0

0.5

1

1.5

2

2.5

3

3.5

4

0.
09

99

0.
50

77

0.
91

54

1.
32

3

1.
73

1

2.
13

9

2.
54

6

2.
95

4

3.
36

2

3.
77

4.
17

7

4.
58

5

4.
99

3

5.
40

1

5.
80

8

6.
21

6

6.
62

4

7.
03

2

7.
43

9

7.
84

7

8.
25

5

8.
66

3

9.
07

1

9.
47

8

9.
88

6

Arrival Rate

R
es

po
ns

e
Ti

m
e

Simulation Results
Simalytic Results
Simalytic Cum Avg
Simalytic R1 Results
Simalytic R2 Results
Simalytic R3 Results
QRT Results

Formulae Relationships - Service Time 2.5

0

10

20

30

40

50

60

0.
00

39

0.
01

98
2

0.
03

57
4

0.
05

16
6

0.
06

75
7

0.
08

34
9

0.
09

94
1

0.
11

53

0.
13

12

0.
14

72

0.
16

31

0.
17

9

0.
19

49

0.
21

08

0.
22

68

0.
24

27

0.
25

86

0.
27

45

0.
29

04

0.
30

63

0.
32

23

0.
33

82

0.
35

41

0.
37

0.
38

59

Arrival Rate

R
es

po
ns

e
Ti

m
e

Simulation Results
Simalytic Results
Simalytic Cum Avg
Simalytic R1 Results
Simalytic R2 Results
Simalytic R3 Results
QRT Results

Figure 21 Example Formulae Comparison

90

found in 7.5 Appendix E: MathCAD Formulae Results Charts on page 180, including a

detailed description of the chart elements and how the charts were created. The charts in

Figure 21 are reduced versions of charts from section 7.4 and are reproduced here only to

provide easy reference to the shape of the curves, not the actual values and labels. The

charts in Figure 21 are representative of the results seen in all of the charts. There are

seven lines in both charts defined as:

Simulation Results: the results from the simulation model.

QRT Results: the results from the queuing theory model.

Simalytic Results: the results from the Simalytic Function response time table

where the function is called once for each arrival rate with the average of all interarrvial

times. This is the theoretical best fit between the Simalytic Function and the queuing the-

ory formula because the interarrival times are both the same average.

Simalytic Cum Avg: the results from a Simalytic Model using a Simalytic Function

that calculates a cumulative average of all prior interarrival times each time it is called.

Simalytic R1 Results: the results from a Simalytic Model using a Simalytic Func-

tion that calculates a rolling average of the interarrival times each time it is called using the

last 1.5% of the interarrival times. This percentage, and the percentages used below in the

description of the Simalytic R2 Results and the Simalytic R3 Results, is calculated as the

number of interarrival times included in the rolling average divided by the total number in

the model interval.

Simalytic R2 Results: the results from a Simalytic Model using a Simalytic Func-

tion that calculates a rolling average of the interarrival times each time it is called using the

last 5% of the interarrival times.

91

 Simalytic R3 Results: the results from a Simalytic Model using a Simalytic Func-

tion that calculates a rolling average of the interarrival times each time it is called using the

last 10% of the interarrival times.

The two lines that do not merge with the other lines are the Simalytic R1 Results

Relative Response Times of Three
 Servers in Series

0.000

2.000

4.000

6.000

8.000

10.000

12.000

0.
01

0.
05

0.
09

0.
13

0.
17

0.
21

0.
25

0.
29

0.
33

0.
37

0.
41

0.
45

0.
49

Arrival Rate

R
es

po
ns

e
Ti

m
es

Series of
0.5, 1.0
and 1.5
Simulation

Series of
0.5, 1.0
and 1.5
Simalytic

Series of
0.5, 1.0
and 1.5
Queuing
Theory

Relative Response Times of Three
 Servers in Series

0.000

2.000

4.000

6.000

8.000

10.000

12.000

0.
01

0.
05

0.
09

0.
13

0.
17

0.
21

0.
25

0.
29

0.
33

0.
37

0.
41

0.
45

0.
49

Arrival Rate

R
es

po
ns

e
Ti

m
es

Series of
0.1, 0.5
and 1.5
Simulation

Series of
0.1, 0.5
and 1.5
Simalytic

Series of
0.1, 0.5
and 1.5
Queuing
Theory

Relative Response Times of Routing to
Three Servers 20% Short, 30% Medium

and 50% Long

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

0.
01

0.
05

0.
09

0.
13

0.
17

0.
21

0.
25

0.
29

0.
33

0.
37

0.
41

0.
45

0.
49

Arrival Rate

R
es

po
ns

e
Ti

m
es

Routing
20% 0.5,
30% 1.0
and 50%
1.5
Simulation

Routing
20% 0.5,
30% 1.0
and 50%
1.5
Simalytic

Routing
20% 0.5,
30% 1.0
and 50%
1.5
Queuing
Theory

Relative Response Times of Routing to
Three Servers 20% Short, 30% Medium

and 50% Long

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

0.
01

0.
05

0.
09

0.
13

0.
17

0.
21

0.
25

0.
29

0.
33

0.
37

0.
41

0.
45

0.
49

Arrival Rate

R
es

po
ns

e
Ti

m
es

Routing
20% 0.1,
30% 0.5
and 50%
1.5
Simulation

Routing
20% 0.1,
30% 0.5
and 50%
1.5
Simalytic

Routing
20% 0.1,
30% 0.5
and 50%
1.5
Queuing
Theory

Figure 22 Comparison of Multi-Server Formulae

92

and the Simalytic R2 Results. The other implementations of the Simalytic Function pro-

duce results that consistently track the simulation results. The R1 and the R2 implementa-

tions did not produce acceptable results and are not used in any of the remaining analysis.

Please refer to section 7.5 Appendix E: MathCAD Formulae Results Charts on page 180

for a more detailed explanation of how these values were calculated.

Figure 22 Comparison of Multi-Server Formulae on page 91 shows four examples

of the resulting response times when servers are combined as discussed in sections 3.4.1.1

through 3.4.1.7. A complete set of charts showing the 32 scenarios from Table 1 Mathe-

matical Formulae Results on page 93, including both series and routing systems, can be

found in 7.5 Appendix E: MathCAD Formulae Results Charts on page 180. The appen-

dix includes a detailed description of the chart elements and how the charts were created.

The charts in Figure 22 are simplified versions of charts from section 7.4 and are repro-

duced here only to provide easy reference to the shape of the curves, not the actual values

and labels. The important information in this figure is that each chart shows that the Si-

malytic technique results track both the simulation results and the queuing theory results

for all four of the three server scenarios (two series and two routing).

93

Table 1 Mathematical Formulae Results lists three different views of the relation-

ships for each scenario: percent outside bounds, percentile, and percent difference. These

percentage difference values are calculated by: (simulation results - Simalytic results) /

simulation results.

The Percent Outside

Bounds column shows the

percentage of the results for

each scenario that are greater

than ±10% different. Using

the top two scenarios in the

table as examples, the first

shows 0% outside of the

bounds and the second shows

18% outside of the bounds.

The minimum and maximum

difference percents for the first

scenario are only 1% and 8%

respectively, both within

±10% different, thus 0% out-

side of the bounds. The mini-

mum and maximum difference

percents for the second sce-

Test Scenario
Percent
Outside Percentile

%
Difference

Bounds 10th 90th Min Max
Single Server of 0.1 0% 2% 4% 1% 8%
Single Server of 0.5 18% 2% 11% -2% 12%
Single Server of 1.0 28% 2% 11% -1% 12%
Single Server of 1.5 44% 5% 13% 1% 14%
Series of 0.1 and 0.5 8% 2% 10% -1% 10%
Series of 0.5 and 1.0 0% 4% 10% -1% 10%
Series of 0.1 and 1.5 38% 5% 13% 1% 14%
Series of 0.5 and 1.5 32% 6% 12% 1% 13%
Series of 0.1, 0.5 and 1.0 0% 4% 9% -1% 10%
Series of 0.5, 1.0 and 1.5 18% 6% 11% 0% 13%
Series of 0.1, 0.5 and 1.5 30% 6% 11% 1% 13%
Series of 0.1, 0.5, 1.0 and 1.5 18% 6% 10% 0% 13%
Routing 80% 0.1 and 20% 1.0 0% 0% 7% 0% 7%
Routing 80% 0.5 and 20% 1.5 26% 1% 11% 0% 12%
Routing 80% 0.1 and 20% 1.5 12% 1% 10% 1% 10%
Routing 80% 0.1 and 20% 0.5 0% 0% 4% 0% 4%
Routing 20% 0.1 and 80% 1.0 10% 2% 10% -1% 11%
Routing 20% 0.5 and 80% 1.5 40% 5% 12% 1% 13%
Routing 20% 0.1 and 80% 1.5 44% 5% 13% 1% 13%
Routing 20% 0.1 and 80% 0.5 20% 1% 11% -1% 11%
Routing 50% 0.1 and 50% 1.0 12% 1% 10% -1% 11%
Routing 50% 0.5 and 50% 1.5 6% 5% 10% 1% 11%
Routing 50% 0.1 and 50% 1.5 22% 5% 11% 1% 11%
Routing 50% 0.1 and 50% 0.5 6% 0% 10% -1% 10%
Routing 70% 0.1, 20% 0.5 and 10% 1.0 0% -1% 4% -1% 5%
Routing 70% 0.5, 20% 1.0 and 10% 1.5 0% 0% 9% -1% 10%
Routing 70% 0.1, 20% 0.5 and 10% 1.5 0% 1% 6% 1% 7%
Routing 20% 0.1, 30% 0.5 and 50% 1.0 0% 1% 9% -1% 10%
Routing 20% 0.5, 30% 1.0 and 50% 1.5 6% 4% 9% 0% 11%
Routing 20% 0.1, 30% 0.5 and 50% 1.5 2% 4% 10% 1% 11%
Routing 34% 0.1, 33% 0.5 and 33% 1.0 0% -1% 9% -1% 9%
Routing 34% 0.5, 33% 1.0 and 33% 1.5 0% 0% 9% 0% 9%
Routing 34% 0.1, 33% 0.5 and 33% 1.5 0% 1% 9% 1% 9%
Routing 70% 0.1, 15% 0.5, 10% 1.0
and 5% 1.5

0% 0% 3% 0% 4%

Routing 10% 0.1, 20% 0.5, 25% 1.0
and 45% 1.5

0% 2% 9% 0% 9%

Routing 25% 0.1, 25% 0.5, 25% 1.0
and 25% 1.5

0% 0% 9% 0% 9%

Table 1 Mathematical Formulae Results

94

nario, however, are -2% and 12% respectively. In this case, the 18% outside of the

bounds shows how many of the data points in the scenario are between 10% different and

12% different. The closer this value is to zero the better the correlation between the

simulation and the Simalytic results.

The Percentile (90th and 10th) columns show the 90th percentile percentage differ-

ence for each scenario (90% of the differences are less than or equal to the percentage

shown) and the 10th percentile percentage difference for each scenario (90% of the differ-

ences are greater than the percentage shown).

Finally, the columns labeled % Difference shows the maximum and minimum dif-

ferences for each scenario. Both Table 1 and Figure 22 clearly show that the Simalytic

function tracks closely to the simulation results. The large Max % Difference and the small

Min % Difference show that the Simalytic function is also consistently under predicting the

system response time, which is due to some of the issues discussed in section 3.5.2.1

Validation Approach Limitations on page 81. It can be seen from Table 1 that even when

there is a large number of results outside the boundaries (±10% different), both the 90th

Percentile and the Max % Difference are relatively close to the upper boundary (+10%

different). Further analysis of these results shows that the Simalytic function returns

clearly delineated (i.e. precise) predictions although they are not accurate in terms of ex-

actly matching the simulation results. However, the results from the Simalytic function

can be adjusted by a simple constant multiplier (1.05 for this specific data, determined by

experimentation) to greatly increase the accuracy. This adjustment, also called model

calibration, is referred to as percent difference, and is one of several commonly used cali-

bration techniques (Menascé, Almeida, and Dowdy 1994 309). The significance of this

95

factor is not the value used, but that the same value can be applied for all of the models.

Not only does this improve the correlation between the two for this investigation, but it

also shows that the prediction capabilities of the technique in real-world situations can be

improved to the required level of accuracy. Because the Simalytic function provides con-

sistently precise results, that is, results within a narrow range for the given input values,

the accuracy can be improved by refining the implementation of the function during model

calibration using

techniques such

as the simple

constant multi-

plier discussed

above.

A sample

of scenario re-

sults calculated after such an adjustment is shown in Table 2 Mathematical Formulae Re-

sults After Adjustment. Only four of the scenarios were adjusted to show that the adjust-

ment is reasonable for a variety of the scenarios. Those selected are the worst and the

best differences and two spaced between those extremes. These results after adjustment

are much more centered around zero. The Routing 20% 0.1 and 80% 1.5 scenario appears

to be a greater discrepancy than it really is because the Percent Outside Bounds value is

very high (44%). However, the percent drops quickly as the bounds are increased because

the results are clustered very close together just greater than the 10% delta bounds. At an

11% delta the value is 26%, at 12% delta the value is 12%, at 13% delta the value is only

Test Scenario After Adjustment
Percent
Outside
Bounds

Percentile %
Difference

10th 90th Min Max
Routing 25% 0.1, 25% 0.5, 25% 1.0
and 25% 1.5

0% -5% 4% -5% 4%

Results before adjustment 0% 0% 9% 0% 9%
Routing 70% 0.1, 20% 0.5
and 10% 1.5

0% -4% 2% -4% 3%

Results before adjustment 0% 1% 6% 1% 7%
Routing 20% 0.1 and 80% 1.5 0% 0% 8% -4% 9%

Results before adjustment 44% 5% 13% 1% 13%
Routing 80% 0.1 and 20% 0.5 0% -5% -1% -5% -1%

Results before adjustment 0% 0% 4% 0% 4%

Table 2 Mathematical Formulae Results After Adjustment

96

8% and it is zero at 14% delta. Thus the multiplier has the effect of moving an already

precise and well contained cluster of results to more accurately match the simulation re-

sults. Although such a multiplier could easily be incorporated into the Simalytic function

implemented in MathCAD, the commercial tools used for the Simalytic Modeling frame-

work provide much greater visibility into the dynamics of the system being modeled.

These tools allow logical analysis of the state of the system at every transition and can

therefore adjust the response time at any node based on additional information such as

current queue length and server utilization. At this point, the speculation is that the under

prediction is a result of the granularity of the steps used in the Simalytic Function (this was

verified using a simulation tool as discussed in section 4.2.5.5 Simalytic Model Example

on page 121 and in Figure 31 Simalytic Function Comparison on page 123.)

3.5.4 Validation of the Simulation Framework

A similar approach is also used to validate the Simalytic Modeling Methodology

using commercial simulation tools for the simulation framework. A number of scenarios

are implemented using the commercial tools and the results are analyzed in a similar man-

ner in sections 4 Simalytic Model Development on page 97 and 5 Investigations into Si-

malytic Modeling on page 127.

