7.5 Appendix E: MathCAD Formulae Results Charts

The following Microsoft Excel charts show the detailed results of the mathematical
formulae as implemented using MathCAD. The MathCAD worksheet used to generate
the resultsislisted in Figure 60 MathCAD Worksheet Listing on page 199. The datawas
collected into a spreadsheet from MathCAD output files. Each set of datais copied to a
worksheet and then charted.
7.5.1 Formulae Relationships

The first group of charts, labeled Formulae Relationships - Service Time, Shows
the relationships between the three formulae (Equation 1 Analytic Response Time For-
mula on page 32, Equation 2 Smulation Response Time Formula on page 35 and
Equation 3 Smalytic Response Time Formula on page 61) implemented in MathCAD at a
series of arrival rates as described in section 3.5.2 Verification/Validation Approach on
page 81. Thelinelabeled Simulation Results shows the response times calculated by a
single execution of the smplistic smulation technique in MathCAD. Some anomalies are
evident for thisline in some of the charts because of the effect the arrival distribution
variation has on asingle model run. These anomalies, seen as curve fall-off at high arrival
rates, disappear when the model is rerun using a different random number seed. Theline
labeled QRT Results shows the response times cal culated by the MathCAD formula
(QueuingRT) for queuing theory response time in Figure 59 MathCAD Wor ksheet for
Queuing Theory Surface Plots on page 178. The lineslabeled Simalytic show results cal-
culated using different implementations of the Simalytic function. Simalytic Results

shows the basic values in the Simalytic function response time table where the function is
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called once for each arrival rate with the average of al interarrvial times. Thisisthe best
value that can be returned if the arrival rate is consistent across the sample period (i.e. a
steady-state system). Simalytic Cum Avg shows the results when the function calcul ates
the cumulative average of the interarrival times each timeit is called and returns the re-
sponse time from the table for that average. Simalytic R1 Results, Simalytic R2 Results
and Simalytic R3 Results show the results when the function calculates arolling average
of theinterarrival times each timeitiscaled. R1isasmall rolling window (1.5% of the
total events), R2 isamedium rolling window (5% of the total events) and R3 isalarge
rolling window (10% of the total events). In each case, the function sums the last x events
(where x represents the rolling window size), divides by x and returns the response time
from the table for that average. Each of these implementations is a compromise between
sensitivity to short-term dynamics and consistent long-term results. The R1 results pro-
vide the greatest sensitivity to dynamic changes but experimentation has shown that the
R1 results, and to alessor degree the R2 results, are overly sensitive to distribution event
order and look-up table step values. The R3 results were used in the comparisons to the
simulation and queuing theory results because they provide the closest approximation to
the steady-state system results but are calculated from parameters to the function and still

remain sensitive to dynamic changesin the arrival rate patterns.
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Response Time
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7.5.2 Relative Response Times

The next group of charts, labeled Relative Response Times, shows the resulting

response times when servers are combined as discussed in sections 3.4.1.1 through

3.4.1.7. These charts show 32 scenarios (Table 1 Mathematical Formulae Results on

page 93 lists the scenarios), including both series and routing systems. Each chart, which

contains either three or four related scenarios (on the same chart to reduce the total num-

ber of charts and pages required), shows how the Simalytic function results track the

simulation results.

Thefirst chart, Relative Response Times of System Servers, Smply reproduces the

results from the last charts in the same format, and using the same arrival rate scale, to

provide easy reference between the single server results and the multi-server results. The
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lines are labeled with the server service time and the MathCAD result name (Simulation,
Simalytic R3 (as discussed above) and the queuing theory function QRT). For example,
the bottom line in the legend is labeled 0.1 QRT Results and represents the response time
for aserver with a service time of 0.1 calculated by the MathCAD formula (QueuingRT)
for queuing theory response time in Figure 59 MathCAD Worksheet for Queuing Theory
Surface Plots on page 178.

The rest of the charts show the resulting response times when servers are com-
bined as discussed in sections 3.4.1.1 through 3.4.1.7. Each line is|abeled with the name
of the scenario, which isintended to be descriptive of the number of servers, the relation-
ship between servers (series or routing) and the service times of each of the servers. For
example, in the chart titled Relative Response Times of Two Servers in Series, thetop line
in the legend islabeled, Series of 0.1 and 0.5 Simulation, and shows the results of com-
bining two servers in series where one has a service time of 0.1 and the other has a service
time of 0.5, and the results were created using the MathCAD simulation technique. The
bottom line in the same legend, Series of 0.5 and 1.5 Queuing Theory, shows the results of
combining two serversin series where one has a service time of 0.5 and the other has a
service time of 1.5, and the results were created using the MathCAD queuing theory tech-
nigue. Another example is shown in the chart titled Relative Response Times of Routing
to Two Servers 80% Short and 20% Long, Wherethetop linein the legend islabeled
Routing 80% 0.5 and 20% 1.5 Simulation, and shows the results of combining two servers

where 80% of the transactions are short (routed to the 0.5 service time server) and 20%
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are long (routed to the 1.5 service time server) and the results were created using the
MathCAD simulation technique.

In theory, the lines with the same scenario name, except for the technique used,
should produce the same curve (these have the same shaped symbol on each chart). For
example, the lines labeled Routing 80% 0.5 and 20% 1.5 Simulation, Routing 80% 0.5 and
20% 1.5 Simalytic and Routing 80% 0.5 and 20% 1.5 Queuing Theory, (shown with a
sguare symbol) should be indistinguishable. The small differences seen in the lines for
each group show how well the results from the three techniques match. The purpose of
these charts is to show that, in all cases, the differences are relatively small. Additional
discussion and detailed analysisisin section 3.5.3 Validation of the Mathematical Foun-

dation on page 86.
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vsi ze, nsize nunber of transactions <== set by user

Servi ceTi me average server service tine <== set by user

I RT an array containing the interarrival tines between each
transaction

Arv an array containing the arrival time for each transaction

Dep an array containing the departure tinme for each transaction

Srv an array containing the service time for each transaction
(exponential distribution)

Si mul ati onResp an array containing the response tine for each transaction
(service + wait tine)

SRTi mes an array containing the response tines for each transaction from
the Simalytic function

rexp(x,y) Built-in exponential function that returns an array of x elements
with rate vy.

QRT(r) Queui ng theory function returns response tine for rate r and
Servi ceTi ne.

SRT(r) Simul ation function returns response tine for rate r and
Servi ceTi ne.

Simalytic(ir) Transform function that returns response tine for

interarrival rate ir and ServiceTi ne.
Matrix indices are: i, n, r, m mi, mn
Each of the mmjor arrays (above) is a single colum. The same names are used
prefixed with a lower case 'a' to show a multi-colum version of the array
(i.e. IRT and al RT).

Variabl es used to calculate the steps in the Simalytic function SrvRTi nme:

11, 12, 13, 14, 15, 16, 17, 18 and 19 calculate the interarrival tines for
t he steps

S1, S2, S3, S4, S5, S6, S7, S8 and S9 cal culate the response tinmes for the
st eps.

The arrays vsl, vx and MaResp are used with the built-in functions | oess and
interp to fit a curve to the results of the sinulation

nsize is used for the simulation matrix to get a |larger nunber to sanple (sane
usage a vsize).

ServiceTime =50  geryice rate for this analysis run
vsize = 1000 Nunmbers of transactions for this analysis run.

rate is calculated as 1/ServiceTinme to set the upper bound at the saturation
poi nt.

1
rate = —— — .01

ServiceTime
Define a queuing theory function to calculate the response tinme when given an
arrival rate. The service time is a constant for this analysis run. (The
function only returns positive response tinmes. The calculated tinme goes
negative when the server is saturated and the function returns infinity to
show this. Because of Mat hCAD roundi ng of internedi ate values a snmall val ue
is added to avoid a divide by zero error.)

ServiceTime

(1 - q_rate:ServiceTime) + .00000001
rt if rt>0

QRT(q_rate) = |rt<

¥ if rt<0

¥ otherwise

Figure 60 MathCAD Worksheet Listing

199




Set matrix indices (MathCAD Matrices are zero based)

i:=0.vsize-1

ni=1.vsize-1 (i for all elenents, n for all but first)

r=.001,.002..ratte  (r sets the arrival rates to use for plots)

Create arrays of interarrival times (IRT) and service times (Srv)

IRT:= rexp(vsize,rate)  Srv:= rexp(vsize, rate)

Create a series of step points for the transformfunction (interarrival tines
for step points)

11:= i-6 12 = i-4 13 1= i-3 14 = i-2 15 = i-1.5
rate rate rate rate rate

16 = i-1.25 17 = i-1.15 18 = i-1.1 19 = i-1.02
rate rate rate rate

(response tines for step points)

S1:= QRT(i) S2:= QRT<i> S3:= QRT<3> S4 = QRT<l> S5 = QRT<i>
11 12 13 14 15

S6 = QRT(i) S7:= QRT<£> S8 = QRTG) S9 = QRT<£>

16 17 18 19

(cum ative average index, ca_i=initital part, ca=main part )
Cavg, = mean (submatrix (IRT,0,i,0,0)) (cunml ati ve average of all events)

(initialize the first part of the array to lowir value to represent warmup
interval)

CavgCa i =11-1.10

ral =5 rail . =ral..vsize-1 ral_i:=0.ral-1

ra2 = 10 rai2 =ra2..vsize-1 rai2_ii=0.ra2-1

ra3 = 25 rai3:=ra3..vsize-1 ra3_i:=0.ra3-1
Ravglrail = mean( submatrix (IRT, rail — ral,rail,0,0))

Ranlrail_i = Ravgl . (rolling average of ral events)
Rangraiz = mean( submatrix (IRT, rai2 — ra2,rai2,0,0))

Ravgzraiz_i = Ravg2 (rolling average of ra2 events)

Ravg3rai3 = mean( submatrix (IRT, rai3 — ra3,rai3,0,0))

Ran3rai3_i = Ravg3_. (rolling average of ra3 events)

Define the transform function using the step point rates and service tines
Simalytic (ir) := | ServiceTime if 11<ir

S1 if 12<irsI1
S2 if I3<ir=12
S3 if 14<ir=I3
S4 if I5<ir=14
S5 if I6<ir=I5
S6 if 17<ir=16
S7 if I18<ir=17
S8 if 19<ir=I18

S9 otherwise

Figure 60 continued from previous page
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Create arrays of transaction arrival tines (Arv), transaction departure tines
(Dep) and transaction response tinmes (SinulationResp) to sinmulate the system
This technique is taken fromthe Mat hCAD Statistics El ectroni c Book,

Si mul ati on section.

Ay =0 (the first arrival tinme is zero)

(each following tinme adds an interarrival tine to the prior arrival tine)
Arvn::Arv + IRT

n-1 n-1
Dep, = Ay + Sryy  (the first departure time is the first arrival time plus the

service tine)

Dep_ = |f<Arvn> Dep, Arv+ St Dep_

iy 1t Srvn>

(each following time is either the arrival time plus the service tine (no
queue) or the prior departure tinme plus the service tinme. the response tines
are the differences between transaction arrival tinmes and departure tines)
SimulationResp := Dep — Arv

MaxATime = Arv

vsize — 1

MaxDTime .= Depvsize 1
ARate = %€
MaxATime

Create an array containing the response tinmes for each transaction fromthe
Simal ytic function.
SRTimes = Simalytic (IRTn>

1

QSRTimes_ = QRT ——
n IRTn

SR_Ravgl ‘= Simalytic (Ravgln>

SR_Cavg, = Simalytic (Cavgn>

SR_Ravg2 ‘= Simalytic (Rav92n>

SR_Ravg3 ‘= Simalytic (Ravg3n>

Results are generated froma series of sinulations at different arrival rates.
The sinulation builds colums of the array of response tines at mdifferent
arrival rates between .1 and rate+.1. The average for each colum is then
plotted and a curve fit to the points. That curve is then laid on top of the
queui ng theory and Sinmalytic function curves from above.

(current val ues)

msize := 1000 (nunber of colums in the matrix - simlar to vsize above)

m_i:= 0..msize - 1

m_n:=1.msize -1 (indices for matrix)

(create an array of arrival rates)

max_m =49 (nunber of colums on the matrix)

m:=0.maxm (colums index for matrix)

mrate = rate-< + .Ol>
m max_m
Zn = 0 (set a tenporary vector to zeros)

Figure 60 continued from previous page
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Set each columm to be an array of exponential val ues

aRT™” = <m5|ze mrate > (array of interarrival times at different means)
MalRT = n(al <m>>
<m> . .
asrv = p<m5|ze > (array of service tinmes at the sanme nean)
ServiceTime,
MaSrv = (aSrv<m>>
aArv<0> =z
aArv = aAv + alRT (set the arrival times for each col um)
m_n,m m_n-1,m mn—-1,m
aDepO,m = aArvO’m+aSrv0’rn (set the departure tines for each col um)
aDep = if{ @aArv >aDep , aArv + aSrv ,aDep + aSrv
m_n,m m_n,m m_n-1,m m_n,m m_n,m mn-1,m m_n,m

aSimulationResp = aDep - aArv  (set the response tines for each col um)

MaResp = mean(aSimuIationResp<m>) (create a vector of the average response tinme of
each col umm)

mral = 15

mrail .= mral.. msize — 1
mrail_i = 0..mral - 1
mra2 = 50

mrai2 .= mra2.. msize — 1
mrai2_i = 0..mra2 - 1
mra3 := 100

mrai3 .= mra3.. msize — 1
mrai3_i = 0..mra3 - 1

aCav% im mean (submatrix (aIRT<m g ,0,m_i, 0, O))

= mean (submatrix (aIRT<m g ,mrail — mral, mrail, 0, O))

aRavgl mrail, m

aRavg] mrail_i, m - aRavg] mral, m

aRavg2 mrai2. m mean (submatrix (aIRT<rn> , mrai2 — mra2, mrai2,0,0>>
aRavgZ mrai2_i, m - aRavgZ mra2, m

aRavg3 mraiz. m mean (submatrix (aIRT<rn> , mrai3 — mra3, mrai3,0,0>>
aRavg3 mrai3_i, m - aRavg3 mra3, m

aSRTimesC . = Simalytic (aCavgm_i’m>

aSRTlmesle_i’rn = Simalytic (aRanlm_i,m)

aSRTimesR2 . = Simalytic (aRanzm_i,m)

aSRTimesR3 . = Simalytic (aRanSm_i,m)

MaSimalyticResp = Simalytic (MaIRTm>
MaSimalyticRespC m = mean (aSRTimesC<rn >>

MaSimalyticRespR1 m = mean (aSRTimesRl<rn >>

MaSimalyticRespR2 m = mean (aSRTimesRZ<rn >>
MaSimalyticRespR3 m = mean (aSRTimesRIB<rn >>

Figure 60 continued from previous page
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The MathCAD built-in functions (loess and interp) are used to fit a line to
t he average response tines of each col um.

VX = m
m

vsl = loess(vx, MaResp,.35)
vs2 = loess (vx, MaSimalyticResp , .35)
SimuResults (x) = interp<vsl,vx, MaResp,vxm>

SimalyResults (x) := interp(vsz,vx, MaSimalyticResp ,vxm>
SimulationResuItsm = SimuResults (1)
SimalyticResults m SimalyResults (1)

vs2C := loess (vx, MaSimalyticRespC , .35)
vs2R1 = loess (vx, MaSimalyticRespR1 , .35)
SimalyResultsC (x) := interp <v52C,vx, MaSimalyticRespC ,vxm>

SimalyResultsR1 (x) := interp(stRl,vx, MaSimalyticRespR1 ,vxm>
SimalyticResuItsCm = SimalyResultsC (1)
SimalyticResuItsle = SimalyResultsR1 (1)

vs2R3 = loess (vx, MaSimalyticRespR3 , .35)
vs2R2 = loess ( vx, MaSimalyticRespR2 , .35)
SimalyResultsR3 (x) i= interp<v52R3,vx, MaSimalyticRespR3 ,vxm>

SimalyResultsR2 (x) i= interp(stRZ,vx, MaSimalyticRespR2 ,vxm>
SimalyticResuItsR3m = SimalyResultsR3 (1)
SimalyticResuItsRZm = SimalyResultsR2 (1)

Wite the results to file to be inported into Excel.
WRITE(McadData ) := ServiceTime

APPEND( McadData) := ArrivalRate
WRITEPRN McadD_U) = SimulationResults
WRITEPRN McadD_Y) := SimalyticResults
WRITEPRN McadD_YC) := SimalyticResultsC
WRITEPRN McadD_YR1) = SimalyticResultsR1
WRITEPRN McadD_YR2) = SimalyticResultsR2
WRITEPRN McadD_YR3) = SimalyticResultsR3
WRITEPRN McadD_mrate) := mrate
WRITEPRN McadD_QT) = QRT(mratem>

Figure 60 continued from previous page
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7.6 Appendix F: MathCAD/Simul8 Comparison Results
The charts in this section show the relationship between the Simul 8 results and the
MathCAD results, comparing the two modeling implementations. The charts show results
for the scenarios in Table 11 MathCAD/Smul8 Results Scenarios. Each scenario is iden-
tified by the number of servers and the service time for each. The routing scenarios aso
indicate the percent of the transactions routed to each server. Each scenario was modeled

at arrival rates of 0.1, 0.2,

Series Routing
0.3, 0.4, 0.45 and 0.5 trans- Scenarios Scenarios
Single server Two servers
. 0.1 80% 0.1 & 20% 1.0
actions per second. 05 80% 0.5 & 20% 1.5
o 1.0 80% 0.1 & 20% 1.5
The chartsbeginning  [15 80% 0.1 & 20% 05
20% 0.1 & 80% 1.0
on page 207 show therela- Two servers 20% 0.5 & 80% 1.5
0.1& 05 20% 0.1 & 80% 1.5
tionship between the Math- 05& 1.0 20% 0.1 & 80% 0.5
01& 15 50% 0.1 & 50% 1.0
CAD mode's and the Simul8 05& 15 50% 0.5 & 50% 1.5
50% 0.1 & 50% 1.5
Threeservers 50% 0.1 & 50% 0.5
models. A blank space sepa- 0L 05& 1.0
0.1,05& 15 Threeservers
rates each group of results 05,108& 15 70% 0.1, 20% 0.5 & 10% 1.0
70% 0.5, 20% 1.0 & 10% 1.5
for agiven number of servers | Four servers 70% 0.1, 20% 0.5 & 10% 1.5
0.1,05,1.0& 1.5 20% 0.1, 30% 0.5 & 50% 1.0
High servicetime 20% 0.1, 30% 0.5 & 50% 1.5
. 25.0 34% 0.1, 33% 0.5 & 33% 1.0
Each group of three vertical 50.0 34% 0.5, 33% 1.0 & 33% 1.5
75.0 34% 0.1, 33% 0.5 & 33% 1.5
bars represents the results of 99.0
Four servers
one modeling scenario im- 70% 0.1, 15% 0.5, 10% 1.0 & 5% 1.5
10% 0.1, 20% 0.5, 25% 1.0 & 45% 1.5
plemented with Simul8. 25% 0.1, 25% 0.5, 25% 1.0 & 25% 1.5
Table 11 MathCAD/Simul8 Results Scenarios

There are three bars because
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Simul8 produces response time results for the £95% confidence limits in addition to an
average. Theline on the chart represents the results of the MathCAD implementation
from Table 1 Mathematical Formulae Results on page 93. The format of the chartsis
somewhat non-conventional in that the line does not represent a continuous series of re-
lated values. A line was used to connect the independent values for several reasons: to
allow the reader to easily find each data point, to visualy distinguish the MathCAD results

from the Simul8 results, to provide an overal

impression of the shape of the MathCAD re- Arrivel Service Times
rriv

sults and to allow easy comparison between Rates | 25.0 | 50.0 | 75.0 | 99.0
0.001 v v v v

the two different groups of data points. 0.005 vivilivy il
0.009 v v v v

The last chart in this section is a simi- 0.0125 v v v

0.015 v v

lar comparison for the high service time serv- 0.02 4 4
0.03 v

ers shown in Table 12 High Service Time 0.04 v

Scenarios, which also shows the service times Table 12 High Service Time Scenarios

for these scenarios. A check mark (v) indicates which arrival rates were modeled for
each servicetime. A blank indicates that the model saturated and did not produce usable
results.

In most cases the MathCAD result is very close to the average response time and
between the +95% confidence limits. The few cases where the MathCAD results were
significantly different were assumed to be caused by distribution variations in the Math-
CAD results because they were generated by single run trials. To determineif thiswas a

reasonable assumption, a number of scenarios showing the difference were modeled with
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MathCAD using multiple run trials. These selected scenarios were: asingle server with a
servicetime of 1.5 and an arrival rate of 0.5, al of the scenarios for a single server with a
service time of 25.0 and al of the scenarios for a single server with a service time of 75.0.
The first was selected because most of the differences appeared to occur in a scenario that
included this server. The last two were selected because they showed differences both
significantly higher than and lower than the Simul8 results. Additional MathCAD model
results were generated using seven model runs per trial, each with a different random
number seed. These results were very consistent with the Simul8 model results and
strongly indicate that the assumption was correct. Each of the multi-run MathCAD trials
require significant effort and resources and it was determined that there was no additional
benefit to conducting additional trials. These selected multiple run trials are indicated on
the .5 Arrival Rate Series Results and the High Service Time Results charts as the series

labeled MC Trials Average.
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.01 Arrival Rate Routing Results MathCAD vs. Simul8
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.2 Arrival Rate Routing Results MathCAD vs. Simul8

, ,
, ,
o o
S «
— —

1.80
160 T

, ,
. .
o =}
S @
— o
awi| asuodsay

.
t
=)
=
(=)

0.60 T

ST%SC®0T
%SZ 'S0 %SZ ‘T'0 %SZ

ST%Sr® 0T
%SZ 'S0 %02 ‘T°0 %0T

ST%S®0T
%0T 'S0 %ST ‘T°0 %0L

ST

%EE ® G0 %EE ‘T'0 %VE
ST

%EE ® 0'T %EE ‘G0 %Ve
0T

%EE ® G0 %EE ‘T'0 %VE
ST

%05 ® §'0 %0€E ‘T°0 %02
ST

%05 ® 0'T %0€E ‘S0 %02
0T

%05 ® §'0 %0€E ‘T°0 %02
ST

%0T ® §'0 %02 ‘T°0 %0L
ST

%0T ® 0'T %02 ‘S0 %0L
0T

%0T ® §'0 %02 ‘T°0 %0L

G°0 %05 ® T°0 %05

S'T %05 ® T°0 %05

S'T %05 ® §°0 %05

0'T %05 ® T°0 %05

G'0 %08 ® T°0 %02

S'T %08 ® T°0 %02

S'T %08 ® 50 %02

0'T %08 ® T°0 %02

G°0 %02 ® T°0 %08

ST %02 ® T°0 %08

S'T %02 ® §°0 %08

0'T %02 ® T°0 %08

—+—0.2MC

E90.2 95%

Test Scenario

0.2 Avg
.3 Arrival Rate Routing Results MathCAD vs. Simul8

E90.2 -95%

ST%SC®0T
%SZ 'S0 %SZ ‘T'0 %SZ
ST%Sr® 0T
%SZ 'S0 %02 ‘T°0 %0T
ST%S®0T
%0T 'S0 %ST ‘T°0 %0L

ST

%EE ® G0 %EE ‘T'0 %VE
ST

%EE B 0'T %EE ‘G0 %Ve
0T

%EE ® G0 %EE ‘T'0 %VE
ST

%05 ® §'0 %0€E ‘T°0 %02
ST

%05 ® 0'T %0€E ‘S0 %02
0T

%05 ® §'0 %0€E ‘T°0 %02
ST

%0T ® §'0 %02 ‘T°0 %0L
ST

%0T ® 0'T %02 'S0 &\oobm
0T

%0T ® §'0 %02 ‘T°0 %0L

Test Scena

G°0 %05 ® T°0 %05

S'T %05 ® T°0 %05

S'T %05 ® §°0 %05

0'T %05 ® T°0 %05

G°0 %08 ® T°0 %02

S'T %08 ® T°0 %02

S'T %08 ® 50 %02

0'T %08 ® T°0 %02

G'0 %02 ® T°0 %08

S'T %02 ® T°0 %08

S'T %02 ® §°0 %08

0'T %02 ® T°0 %08

2.50
2.00 T
150 T

€

o
Q
—
11 asuodsay

0.50 1

E90.3 95% —+—0.3MC
212

==0.3 Avg

E90.3-95%




.4 Arrival Rate Routing Results MathCAD vs. Simul8

3.00
250 1

,
.
(=]
0
—
awi| asuodsay

.
t
Q
<
o

1.00 T
0.50 1

ST%SC®0T
%SZ 'S0 %SZ ‘T'0 %SZ

ST%Sr® 0T
%SZ 'S0 %02 ‘T°0 %0T

ST%S®0T
%0T 'S0 %ST ‘T°0 %0L

ST

%EE ® G0 %EE ‘T'0 %VE
ST

%EE ® 0'T %EE ‘G0 %Ve
0T

%EE ® G0 %EE ‘T'0 %VE
ST

%05 ® §'0 %0€E ‘T°0 %02
ST

%05 ® 0'T %0€E ‘S0 %02
0T

%05 ® §'0 %0€E ‘T°0 %02
ST

%0T ® §'0 %02 ‘T°0 %0L
ST

%0T ® 0'T %02 ‘S0 %0L
0T

%0T ® §'0 %02 ‘T°0 %0L

G°0 %05 ® T°0 %05

S'T %05 ® T°0 %05

G'T %05 ® §°0 %05

0'T %05 ® T°0 %05

G'0 %08 ® T°0 %02

S'T %08 ® T°0 %02

S'T %08 ® 50 %02

0'T %08 ® T°0 %02

G°0 %02 ® T°0 %08

S'T %02 ® T°0 %08

S'T %02 ® §°0 %08

0'T %02 ® T°0 %08

—+—0.4MC

E90.4 95%

Test Scenario

0.4 Avg
.45 Arrival Rate Routing Results MathCAD vs. Simul8

E90.4 -95%

.
t
Q
<
o

3.00
250 1

;
.
(=]
0
—
awi| asuodsay

1.00 T
0.50 1

ST%SC®0T
%SZ 'S0 %SZ ‘T'0 %SZ

ST%Sr® 0T
%SZ 'S0 %02 ‘T°0 %0T

ST%S®0T
%0T 'S0 %ST ‘T°0 %0L

ST

%EE ® G0 %EE ‘T'0 %VE
ST

%EE B 0'T %EE ‘G0 %Ve
0T

%EE ® G0 %EE ‘T'0 %VE
ST

%05 ® §'0 %0€E ‘T°0 %02
ST

%05 ® 0'T %0€E ‘S0 %02
0T

%05 ® §'0 %0€E ‘T°0 %02
ST

%0T ® §'0 %02 ‘T°0 %0L
ST

%0T ® 0'T %02 ‘G0 %0L
0T

%0T ® §'0 %02 ‘T°0 %0L

G°0 %05 ® T°0 %05

S'T %05 ® T°0 %05

Test Scenario

S'T %05 ® §°0 %05

0'T %05 ® T°0 %05

G°0 %08 ® T°0 %02

S'T %08 ® T°0 %02

S'T %08 ® 50 %02

0'T %08 ® T°0 %02

G'0 %02 ® T°0 %08

S'T %02 ® T°0 %08

S'T %02 ® §°0 %08

0'T %02 ® T°0 %08

3 0.45 95% ——0.45MC
213

==10.45 Avg

E30.45 -95%




.5 Arrival Rate Routing Results MathCAD vs. Simul8

3.50

ST%SZROT
%SZ 'S0 %GZ ‘T0 %ST
ST%SY R 0T
%52 'S0 %0Z ‘T'0 %0T 6000 066
ST%S0T
%0T 'S0 %GT ‘T'0 %0L 5000 066
— 1000 :0'66
ST
%EE B G0 %EE ‘T0 WFE
ST o
%EE B 0'T %EE ‘S0 WFE = P
i Ir e} 52100 0°SL
o1 2 =S
%EE B G0 %EE ‘T0 WFE = R
ST ._. =
9605 B G0 %0 ‘T0 %02 " S
ST » ’
9605 B 0'T %0E ‘50 %02 2 —
o a .
9605 B G0 %0 ‘T0 %02
ST X <
%0T B G0 %0Z ‘T0 %0L o ©]
. 0 < 200 00§
ST ] -
%0T B 0'T %02 'G'0 %0L e ©
o1 - s 5100 008
%0T B G0 %0Z ‘T0 %0L »
it 52100 1005
2 5
=
] (%) 6000 ‘005
S0%0SBTO%0S @ o}
j 81
L - @ 5000 :0°0S
STH0STTONOS 5 | 2 @
2 lw S 1000 :0°05
ST %05 ® 50 %05 S =
=
0°T %05 ® T'0 %05 - w
S ¥00 052
50 %08 ® T'0 %02 bt
i | 3 £0°0 0'5Z
ST %08 ® T'0 %02 0p]
! . < < 200 05T
ST %08 ® 50 %0Z 8 [o))
o =
0T %08 % 10 %02 © T ST0'0 06T
o
50 %02 ® T'0 %08 - Se100 -0'se
ST %02 ® T'0 %08 6000 -0'5e
ST %02 ® 50 %08 5000 -0'5e
0T %02 3 T'0 %08 1000 -0'se
T T T T
5 8 8 8 8 g§ &8 s 0§ § ¢ § § § § ¢
o N N — — o o m,. M. H m @ © < ~
awi| asuodsay awiL asuodsay

=& MC Trials Average

214

E=30.95

Test Scenario (Service Time: Arrivial Rate)

CAvg

E=3-0.95




7.7 Appendix G: Tool Baseline Comparison Results

Thisfina set of comparisons establishes the validity of the Simul8 tool to provide
baseline ssimulation results by comparing those results to both the MathCAD results
(smulation and queuing theory) and the OpenQN results. These comparisons are shown
on two charts.

Figure 61 Sngle Server Baseline Chart compares the Simul8 results for single
server model test scenariosto al three sets of the other results for the same environment,
MathCAD simulation, MathCAD queuing theory and OpenQN. This chart shows avery
close correlation between all four of the groups of results. The Test Scenario names be-

gan with M (for model) and reflect the arrival rate and service time for each scenario in the
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format Mss-aa, where ss is the service time with an assumed decimal between the digits
(01=0.1) and aa isthe arrival rate with an assumed decimal before the digits (45=.45).
The large difference between the MathCAD simulation result and the other results for the
far right test scenario (M15-5) was due to the single run tria for thismodel as discussed in
section 7.5 Appendix E: MathCAD Formulae Results Charts on page 180. The anomaly
disappeared when the MathCAD model was rerun using amulti-run trial. That result is
not reflected in this chart because it only shows the single run trial for consistency across
the chart.

Figure 62 Multi-device Server Baseline Chart compares the Simul8 results for

system (multi-device server) test scenarios to the same environment modeled with
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OpenQN and with Simul8 using a Simalytic Function (these models were not implemented
in MathCAD). The Test Scenario names began with S (for server) and reflect the arrival
rate and service time for each scenario in the format Sss-aa, where ss is the service time
with an assumed decimal between the digits (01=0.1) and aa isthe arrival rate with an as-
sumed decimal before the digits (45=.45). This chart shows the near identical results for
all three of the modeling techniques, thus establishing the Simul8 modeling tools as valid
to use for the baseline for comparisons with Simalytic Models and that Simalytic Models

produce equivalent results for individual nodes.
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7.8 Appendix H: Glossary

CICS

Customer Information Control System. TP system developed for IBM
System/360 mainframe computer systems. Currently CICSis available
from IBM for a number of operating systems (and the respective hard-

ware platforms), including AlX, MVS, Windows NT and OS/2.

DB2

DataBase 2. A relationa data base system developed for IBM Sys-
tem/360 mainframe computer systems. Currently DB2 is available
from IBM for a number of operating systems (and the respective hard-

ware platforms), including AIX, MVS, Windows NT and OS2

GUI

Graphical User Interface. The interface between the user and a pro-
gram that uses the computer's graphics capabilities to make the appli-
cation easier to use, generally by representing program functions with
icons the user clicks on with a mouse instead of typing application

commands.

Informix

Informix is an object-relationa database management system that is
available on alarge number of Unix systems from Informix Systems,

Inc.

MPP

Massively Parallel Processing. Processors constructed of large num-
bers of CPU’s and connected using some type of communications paths
(generaly the CPU’ s do not have access to the same memory and

disks, i.e. “shared nothing”).
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NFS

Network File System. Protocol used to allow one system to offer disk

filesto be shared by other systems over a network.

node

A computer system (including CPU, disk and network communica-
tions) used as a server in aclient/server environment. In the context of
amodel, the term is used to mean a combination of server and queue or
asubmodel and queue that represent some relatively independent com-

ponent of an application or provide service to an application.

OLTP

On-Line Transaction Processing. Generic term for developing an ap-
plication design implemented with end-user terminals or workstations

and a TP system.

responsiveness

The quality of something to respond to a request from a particular
viewpoint. The responsiveness of a device can beits service time from
the hardware viewpoint or the response time from the application
viewpoint. The responsiveness of an application or transaction is the
user’s perception of response time. Responsiveness is good based on

what is expected or required by that viewpoint.

SPE

Software Performance Engineering. The technique developed by Dr.
Connie Smith as an early lifecycle method for designing and construct-
ing software systems to meet the required performance objectives by

identifying performance problems in the design phase (Smith 1990).

TP

Transaction Processor. A system component, generally considered an

extension of the operating system, that provides a programming API, a
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user interface and resource management functions to schedule and exe-
cute transactions. TP systems generally provide services to control
terminals or workstations so the transaction program can be devel oped
independent of the required communications protocols and screen for-

matting commands.

TPC

Transaction Processing Performance Council. A series of benchmarks
developed to provide objective comparisons between processors from
different manufacturers. Theindividua benchmarks are designated by

a suffix letter, such as TPC-A, TPC-B, TPC-C and TPC-D.

Tuxedo

A transactions processing system developed for Unix systems. Also
referred to as middleware because it generaly isimplemented in the
middle layer of athree tiered architecture. Currently Tuxedo is avail-
able from BEA Systems, Inc. for both Microsoft NT and alarge num-
ber of Unix operating systems (and the respective hardware platforms).
Client software is aso available on MS-DOS, Macintosh OS, Win-

dows 95 and OS/2.

transaction

A relatively small independent unit of work entered into the system by
an end-user to recelve some information as a response in near rea-
time. Transactions include entering an order at atermina (business
transaction), an SQL command (database transaction), some key-
strokes followed by a carriage-return (interactive transac-

tion)¥s whatever is meaningful from the end-user’s point-of-view.
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A database transaction is considered to be self-contained, or atomic,
and is guaranteed to complete successfully or not at al. If anerror
prevents a partialy-performed transaction from proceeding to comple-
tion, it must be "backed out™ to prevent the database being left in an

inconsistent state.

trial

A series of model executions, or runs, used to generate a single result,
usually averaged. Trials are used to reduce the influence of variations

in arrival and service distributions in simulation models.
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