
Simalytic Enterprise Modeling  1996 Tim R. Norton .pdf 1 CMG96 Session 526 - December 12, 1996

Simalytic Enterprise Modeling - The Best of Both Worlds
Tim R. Norton

Doctoral Candidate
Colorado Technical University

CMG96 Session 526, December 12, 1996

Application designs are changing from single system to cross platform client/server utilizing the features of
different types of computers, operating systems and networks. Planning the capacity of large computer instal-
lations using multiple systems requires an understanding of each of these areas and the inter-relationships
between them.

The “Simalytic” (Simulation/Analytic) Modeling Technique1 addresses modeling complex multiple-platform
computer systems at an enterprise level for capacity planning. This technique uses a general purpose simu-
lation tool as an underlying framework and an analytic tool to represent individual nodes when predicting ca-
pacity requirements in an enterprise model. This technique combines both platform-centric tools (limited
features but detailed platform information) and general purpose tools (rich low level features) to address to-
day’s large heterogeneous enterprises. The ‘Best of Both Worlds’ refers to taking advantage of features in the
different techniques (simulation vs. analytic queuing theory) as well as features in the different tools (platform-
centric vs. general purpose).

1Simalytic ModelingTM, Simalytic Modeling TechniqueTM and Simalytic Enterprise ModelingTM are trademarked by Tim R. Norton. All other
trademarked names and terms are the property of their respective ow ners.

 1996 Tim R. Norton. All rights reserved.

1. Introduction
Data Processing has been one of the fastest, if

not the fastest, evolving industries of the century.
Applications that once would have been implemented
as batch systems on a single computer are now multi-
platform on-line transaction processing client/server
systems with GUI (graphical user interface) front-ends
on PWS’s (programmable work-stations) attached to
departmental servers and mainframe repositories.
These new applications utilize the features and serv-
ices of different types of computers (mainframe,
mid-range, desktop) running different operating sys-
tems (MVS, Unix, OS/2, Windows, etc.) connected by
a variety of communication network techniques (RPC,
DCE, NFS, FTP, SNA, APPN, etc.) (Hatheson 1995;
Wilson 1994).

As applications move into this new client/server
world, how do we select the right systems at each
level and, once selected, how do we insure those
systems are the right size? If any one of them is too
small the whole application will fail. If any are too big,
the cost of running the application may exceed the
revenue it generates. Neither is a very attractive
situation.

The objective of capacity planning is to find the
successful middle ground. Not too many years ago
capacity planning meant watching a few metrics like

processor utilization and the overnight batch window to
determine when an upgrade would be needed. Today,
planning the capacity of large computer installations
with multiple systems requires an understanding of not
only the operating systems, the platforms, the clients,
the servers, the networks, the transaction systems,
etc., but also the relationships between them. Once
those relationships are defined and understood, the
application’s performance can be assessed against
the business objectives and goals. Projected business
volumes are then modeled to predict the capacity re-
quired to meet those goals at future volumes.

There are many modeling tools and techniques
that address both performance and capacity for each
of the systems in today’s multi-platform environment
(Pooley 1995; Smith 1995). The “Simalytic”
(Simulation/Analytic) Enterprise Modeling Technique,
introduced in this paper, provides a bridge across
these existing tools to allow the construction of an en-
terprise level application model that takes advantage
of models and tools already in place for planning the
capacity of each system.

The major topics covered in this paper are:

• Section 2 is a general introduction to capacity
planning for transaction applications.

• Section 3 discusses the importance of using trans-
action response times when modeling applications.

Simalytic Enterprise Modeling  1996 Tim R. Norton .pdf 2 CMG96 Session 526 - December 12, 1996

• Section 4 is an overview of differences between
platform-centric and general purpose modeling
tools.

• Section 5 discusses the Simalytic Enterprise Model-
ing technique to address the issues from the prior
sections.

2. Capacity Planning
What is capacity planning in the context of to-

day’s computer systems? Capacity is the maximum
amount that something contains, but amount of what?
Planning is making decisions based on the forecasting
of future events using current and historical informa-
tion. But the decisions to be made are sometimes
contradictory and the information incomplete.

The capacity of a system can be measured many
different ways, depending on the business the system
supports. Usually, the way a system is measured
centers around the performance of one or more of the
applications. The system “has enough capacity” if
everything is getting done when it is needed. This
may sound like a simple statement, but the key to un-
derstanding the capacity of a system is the definition
of the performance objectives. Without some goal at
the business level there cannot be any meaningful
statements about the capacity of a computer system
as long as it continues to run. Without goals, a system
is “out of capacity” only when it becomes so over-
loaded that it deadlocks or when some devices are so
over-utilized that data is lost. Performance might be
very poor, but we only know it is unacceptable if it is
worse than the goal (Domanski 1995 13; Rosenberg
and Friedman 1984; Wicks 1989; Wilson 1994).

Therefore, capacity planning is making decisions
about the resource requirements of a given computer
system based on forecasting future application per-
formance using the goals and expectations of the
business. That is a very broad and general definition,
but it captures the objectives behind capacity planning.
What do we have to buy and when do we have to buy
it to make sure that the applications that run the busi-
ness perform at the level required to insure the busi-
ness succeeds?

2.1.1 Transaction Based Applications

Although there are still many important batch
applications, discussions will center around transaction
based applications for several reasons. First, the
multi-platform client/server systems are generally fo-
cused toward small real-time units of work. Second,
large batch applications generally have long execution
times and points-in-time when all work must be com-
pleted. It just doesn’t matter when a third of the pay-
checks are printed; they all must be ready when the
time comes to distribute them. Third, transaction

based applications are much more sensitive to the
demands of momentary peak loads where batch
based applications are more sensitive to scheduling
issues and interference from higher priority workloads.

What is a transaction? Transaction processing
systems, often referred to as OLTP (On-Line Transac-
tion Processing), allow the end-user to enter a rela-
tively small, independent unit of work into the system
and receive some information in response in near real-
time. Transactions, which can be defined from differ-
ent points-of-view, include entering an order at a ter-
minal (business transaction), an SQL command
(database transaction) or some keystrokes followed by
a carriage-return (interactive transaction). In one
sense, each keystroke a user types in a text editor is a
transaction because a small unit of work (the key-
stroke) is sent to the sever, acted upon and informa-
tion is returned to the user (the keystroke is echoed).
A transaction might be defined as messages received
from or sent to 3270 terminals (which were really early
PWS’s) by an OLTP system such as CICS or IMS, or
as logical units of work marked by “commit” com-
mands by database systems such as Oracle and
Sybase (BGS 1996).

The concept of a transaction is important be-
cause it is meaningful from the end-user’s point-of-
view. Transactions can be counted to establish load
and measured to establish performance. The respon-
siveness of the transactions associated with an appli-
cation determine if that application meets the needs of
the business. A customer service representative can
answer more inquiries when the requested information
is presented in one or two seconds than if it is pre-
sented in ten or twenty minutes. That responsiveness
has a direct impact on the business and modeling
techniques can be used to predict application respon-
siveness at higher transaction rates.

The importance of looking at transaction process-
ing is evident when we look at a hypothetical company
as its data processing systems evolve over many
years. The XYZ Company starts with a centralized
batch orientated environment where all business func-
tions use punch cards to enter data into the system
and printed reports run the business. Special purpose
servers are introduced to improve the productivity of
some of the departments and over time XYZ has a
decentralized environment. Different business func-
tions on different servers causes communications and
training problems, so the applications are merged to-
gether at the end-user’s PWS using various tech-
niques that preserve and hide the legacy applications
while providing a single common interface for every-
one.

The next three sections (and associated figures)
describe the evolution of the XYZ Company from the

Simalytic Enterprise Modeling  1996 Tim R. Norton .pdf 3 CMG96 Session 526 - December 12, 1996

perspective of the different computer platforms used in
the company. Which operating system was chosen for
each of the business functions was completely arbi-
trary and does not represent a recommendation.
These figures represent one of many scenarios that
could result in a situation where a company must plan
for growth in a multi-platform environment. The intent
of the figures is to show how initially the business
functions can be strongly associated to a single plat-
form and, over time, become dependent on the entire
enterprise environment.

2.1.2 Centralized Environment

A general overview of the centralized batch envi-
ronment is shown in Figure 1 The "Old" System. Ca-
pacity planning in this environment is focused on
getting the reports delivered in the morning. Much of
the real work of the company takes place “off-line” and
the performance of the different applications is not a
major issue. The business will continue to function for
hours, or even days, using the last reports printed.

A capacity planning model of this system consists
of a function that maps run times to input volume.
Using an overly simplified example, if it takes three
hours to process 1000 orders, then we can project it
will take 4.5 hours to process 1500 orders. This model
is easy to build and validate. Historical data provides
many points on the function curve and the curve can
then be projected to higher input volume. This tech-
nique will work with processor time, device utilization
or almost any other measurable resource.

2.1.3 Decentralized Environment

At some point one of the department managers
realizes that they could eliminate data entry costs and
get more up-to-date information by using an on-line
system. As XYZ Company does not have any policy
or direction about distributed systems, the manager
installs a turn-key system where both hardware and
software are provided by the vendor. Another depart-
ment manager sees the benefits and installs their own
on-line system. Of course, they need different soft-
ware which comes from a different vendor who uses

different hardware. After a while, XYZ Company has a
number of systems and looks something like Figure 2
The "New" System.

Capacity planning in a decentralized environment
is still fairly straightforward. Even though each system
sends the old card data to the MVS system for nightly
processing, each system is an island unto itself. If the
Order Entry workload outgrows the VMS system, the
Order Entry users will see a performance delay, but
the Shipping and Receiving users will not be impacted.
As long as the nightly batch runs get done and the
reports printed (which now also means downloaded to
the departmental systems), the business continues to
function.

The introduction of transaction processing com-
plicates modeling performance in this environment, but
the transaction and batch workloads remain, for the
most part, isolated by shift. Modeling the daytime
transaction processing workload requires more so-
phisticated queuing theory or simulation tools, but the
overnight batch is forecasted much the same as be-
fore because it is most often a sequential process. If
the performance of a database deteriorates with vol-
ume, then the function from above might be five hours
to process the 1500 orders. The number of orders
changes relatively little from one batch run to the next
so the model can be validated and revised at intervals.
However, an increase in the number of transactions
from Customer Service will be disproportionately con-
centrated during the daily peak. The much more
complex nature of OLTP requires modeling tools to
take into account the bursts of transaction arrivals and
the increase in response times due to queuing in dif-
ferent parts of the system.

2.1.4 Client/Server Environment

The major change happens when the company
realizes that the large number of different systems and
user interfaces are causing problems for employees to

MVS

ORDERS

SHIPMENTS

INVENTORY

DOCUMENTS

MASTER
DATA BASES

Figure 1 The "Old" System

MVS
DOCUMENTS

MASTER
DATA BASES

VMS

ORDERS

CUST
SERV

SHIPPING
RECEIVING

UNIX

NET
WORK

Figure 2 The "New" System

Simalytic Enterprise Modeling  1996 Tim R. Norton .pdf 4 CMG96 Session 526 - December 12, 1996

communicate and making cross-training much too dif-
ficult. The company takes advantage of the existing
LAN infrastructure and provides the users with a single
common GUI as shown in Figure 3 The
"Client/Server" System. There are many different
techniques and products to accomplish this (Domanski
1995). Which are chosen really doesn’t matter, but
what is important is understanding that any of the cli-
ent applications on any of the PWS’s can, and will,
send transactions to several of the legacy applications
to provide the end-user a screen of “complete and in-
terrelated information”. For example, the Order Entry
user may type in the name of an existing customer
and get not only their address but any pending or past
orders and the status of their account. This may pro-
vide better service, but it also causes transactions to
be sent to each of the other systems.

Capacity planning in a client/server environment
is much harder. The systems are no longer isolated
and independent. In the example above, if the Ship-
ping workload outgrows the Unix system, it can impact
the responsiveness of the Order Entry transactions. In
addition, growth in the Order Entry workload will now
impact the Unix system, but only if the orders are from
existing customers.

Modeling in this environment is truly a challenge.
Each of the systems requires a different knowledge
base and expertise (Gunther 1995; Hatheson 1995).
The systems cannot be modeled independently be-
cause the transaction arrival rate for one system may
be dependent on the response times of the others.
The client software on the PWS may issue transac-
tions to several servers (send everything about cus-
tomer #123) or it may have to wait for one response
before sending the next (what is Jones’ customer
number; then send everything about that number).
While the former situation will cause the instantaneous
peaks to synchronize on all of the servers; the latter
will slow everything down as one of the servers be-

comes overloaded and its response times increase.
“While it is important to be able to model specific UNIX
or NT hardware, the problem we face is modeling the
environment that has a diverse collection of hardware,
operating system, database management system, and
network hardware.” (Domanski 1995).

3. Response Time Modeling
The key to the capacity planning methodology

discussed so far is the ability to predict the perform-
ance of a future workload given a desired system con-
figuration. As applications move more and more
towards being transaction based, the definition of ap-
plication performance becomes centered around
transaction response time. For this reason, modeling
the transaction response time of a application is cru-
cial to the ability to predict the future performance of
that application.

There are two basic modeling techniques used for
computer performance modeling: simulation and
analytic queuing theory (Kobayashi 1981; Menascé,
Almeida, and Dowdy 1994). A third technique, hybrid
modeling, is the combination of both simulation and
analytic techniques in a single model (Kobayashi
1981). The following sections will provide a general
background in these techniques required for the later
discussion of Simalytic Enterprise Modeling. They are
not intended to offer an in-depth explanation of the
modeling techniques, but rather, to provide a brief
overview of each and to introduce the simplified
mathematical formulae for each that will be used to
construct the foundational formula for Simalytic Model-
ing.

Either of the above techniques will build a model
that represents the major components of the computer
system to be modeled. Although there are exceptions,
generally the resources of interest when looking at the
response time of transaction based applications are
processor and disk. Figure 4 Simple Transaction
Model shows a graphical representation of this model.
Transactions enter the system from the left, wait in the
processor queue and are served by the processor.
At this point the transaction will either leave the sys-
tem or move to the disk queue and then the disk
server. Then the transaction goes back for processor
service.

MVS
DOCUMENTS

MASTER
DATA BASES

VMS

ORDERS

CUST
SERV

SHIPPING
RECEIVING

UNIX

NET
WORK

LAN

SHIPPING
DOCUMENTS

GATE
WAY

Figure 3 The "Client/Server" System

Simalytic Enterprise Modeling  1996 Tim R. Norton .pdf 5 CMG96 Session 526 - December 12, 1996

Figure 4 is a very common diagram of the life of
a transaction inside the OLTP system, where reliable
response time measurement data is available (Buzen
1984). This view is common because a transaction
always starts and ends with some amount of process-
ing, even if only enough to do a disk access. The
transaction response time is a measure of the time
from when the transaction enters the system until it
leaves. In a system with a very low arrival rate there
will be little or no queuing. When the system gets
busier and the time between transactions (the interar-
rival time) is shorter than the time to service the prior
transaction, then queues will form for one or more of
the servers. If the arrival rate continues to increase
such that every interarrival time is shorter than the
sum of the server service times, the queues will never
be emptied and the system is considered to be satu-
rated (Buzen 1984).

Until recently, network delay has not been re-
garded as part of the transaction response time when
planning the capacity of a system for two reasons.
First, it is controlled by network hardware and com-
munications lines, which are seldom affected by proc-
essor or disk upgrades. Second, the network delay for
a given transaction will depend on the path through the
network the transaction takes, which may vary greatly
from one end-user to another. However, many cli-
ent/server applications tend to group multiple OLTP
transactions together for what the end-user sees as a
single business transaction. This means that a model
of the systems running the application must include
network delays to provide an accurate representation
of interdependencies between the systems in the en-
terprise (Domanski 1995).

3.1 Analytic Queuing Theory
“Analytical models capture key aspects of

a computer system and relate them to each
other by mathematical formulas and/or compu-
tational algorithms.” (Menascé, Almeida, and
Dowdy 1994, p. 45).

Analytic models can be implemented many differ-
ent ways from paper-and-pencil to spreadsheets to

advanced commercial products. One analytic tech-
nique, queuing theory, plays the most dominant role in
the area of capacity planning because capacity and
performance problems are most often related to
queuing delays caused by contention for resources
within a system (Kobayashi 1981).

These models are usually more efficient to exe-
cute than simulation models, but they are also often
less accurate because the mathematical formulae
normalize all activity for each server in the model. For
example, building a simple analytic model from actual
transaction performance data would result in a single
workload based on the average transaction arrival rate
with each transaction using the average processor
time and the average disk time. If there is very little
difference in the individual transactions, then this
model will provide very good results. However, the
much more common situation is that the variation in
the transactions will result in a model that is difficult to
validate and poor at prediction because most of the
actual transactions are not represented by the average
calculated in the model.

Determining how closely the average transaction
matches the actual transactions is one of the impor-
tant activities in model calibration. When a model
cannot be calibrated it is often because the workloads
being modeled are not homogeneous. The workloads
must then be restructured in the model to reduce the
variation between the average transaction and the
actual transactions. This is referred to as workload
characterization and is one of the foundational con-
cepts required for any modeling activity. The inter-
ested reader will find a full discussion in (Domanski
1995; Menascé, Almeida, and Dowdy 1994).

The mathematical formula for the average re-
sponse time (T) of transactions in a simple single-
server analytic model is shown in Equation 1 Analytic
Response Time Formula from (Menascé, Almeida,
and Dowdy 1994, p. 108) where S is the average time
spent at the server and λ is the average arrival rate of
transactions. A detailed description of this formula
and its application can also be found in (Buzen 1984).

3.2 Simulation
 “The simulation model describes the op-

eration of the system in terms of individual
events of the individual elements in the system.
The interrelationships among the elements are
also built into the model. Then the model al-

Processor
Queue

Disk
Queue

Arrivals

Departures

Processor Disk

Figure 4 Simple Transaction Model

Equation 1 Analytic Response Time Formula

T S
S

=
−1 λ

Simalytic Enterprise Modeling  1996 Tim R. Norton .pdf 6 CMG96 Session 526 - December 12, 1996

lows the computing device to capture the effect
of the elements’ actions on each other as a dy-
namic process.” (Kobayashi 1981, p. 221).

There are many types of simulation models and
techniques. Trace-driven simulations are of more use
in capacity planning and performance modeling be-
cause they remove one major issue in model con-
struction; transaction arrival distribution. Self-driven
simulations generally assume some distribution pat-
tern such as normal or Poisson distributions which
may or may not represent the actual distribution of
application transactions (Kobayashi 1981). Regard-
less of the underlying technique used in the simulation
tool, there are two important characteristics of these
tools. The first is the ability to maintain the identity of
each transaction, and its associated attributes,
throughout the entire model and have the model react
to these attributes. The second is the ability to pre-
serve the specifics of the interarrival times between
individual transactions.

The mathematical formula to estimate the aver-
age response time (T) of transactions in a simple sin-
gle-server simulation model is shown in Equation 2
Simulation Response Time Formula from (Menascé,
Almeida, and Dowdy 1994, p. 108) where Ti is the re-
sponse time of the ith transaction and nt is the total
number of transactions that visited the server during
the simulation.

3.3 Hybrid
 “A hybrid synthetic model consists of both

subsets of the real workload and specially
constructed components.” (Menascé, Almeida,
and Dowdy 1994, p. 44).

“Hybrid modeling: a combination of ana-
lytical procedures and simulation. So long as
the interfaces between different levels or sub-
models are clearly established, the mixing of
analytic and simulation techniques should pre-
sent no technical problems.” (Kobayashi 1981,
p. 20).

A hybrid model combines two or more different
techniques for a variety of reasons, such as complex-
ity reductions, performance improvement or analysis
flexibility. There are many examples of hybrid models
in capacity planning and computer performance.

There are a number of examples of the use of
hybrid models:

• One hybrid technique for workload analysis uses
either analytic or simulation modeling to represent
identical workloads at different levels of detail
(Lehmann 1984).

• A technique for determining if adding workloads to
a system will cause excessive paging uses a two
stage approach where the output from the first
stage (performance measurement analysis) is input
to the second stage (closed queuing network
model) (Place 1986).

• A hybrid technique in the area of CAD/CAM design
systems uses a combination of explicit and
parametric modeling to improve flexibility and pro-
vide the capability to import legacy or outside sup-
plier data (Taylor 1994).

• A hybrid model to solve the distributed environment
file allocation problem uses simulation to model
query-by-query communications delays and an
analytic model for average communication delay
(Ghosh, Murthy, and Moffett 1992).

The above hybrid models show some commonal-
ity in that they rely on the concept of submodels,
similar to subroutines in programming, and they de-
velop a technique that allows the best features of each
tool to be focused on the problem. Submodels, which
are supported by most of the commercially available
modeling tools, are a key concept because they allow
some part of the model to be replaced with a different
model as long as it provides the same functionality.

4. Modeling Tools
In addition to the choice between analytic and

simulation tools, the capacity planner or performance
analyst has the choice between platform-centric and
general purpose tools. The basic difference between
these two groups is the problem set the tools were
designed to address.

4.1 Platform-Centric
Platform-centric means that the tool contains de-

tailed information about the platform, but does not al-
low more than one platform to be modeled at a time.
Examples of platform-centric information include the
number and type of processors for each model of a
system built by a given vendor (e.g. IBM 9021-982 8
processors @ 60 MIPS each), the speed and transfer
rate of disk devices by manufacturer (e.g. EMC 5500-
128 Read (cache hit) = 1.5 ms @ 4.5 MB/sec, Read
(cache miss) = 13.5 ms @ 4.5 MB/sec, Write = 1.5 ms
@ 4.5 MB/sec; all for a 4K block of data), and opera-
tional issues based on the level of the operating sys-
tem (e.g. MVS/SP 1.3, MVS/XA 2.2, MVS/ESA 5.1).

Equation 2 Simulation Response Time Formula

T
T

n
ii

n

t

t

= =∑ 1

Simalytic Enterprise Modeling  1996 Tim R. Norton .pdf 7 CMG96 Session 526 - December 12, 1996

Platform-centric models are often easier to build
because they are made of “building blocks” already
defined to the tools and the relationships between
them are fully understood by the model. However,
these tools cannot be used to model an environment
not built into the tool. For example, a tool with the
above “building blocks” could not be used to model
Unix running on an HP system. Although many plat-
form-centric tools allow the user to define new servers
with new performance characteristics, most do not
provide large libraries of device and system definitions
dramatically different from the supported platform.
Platform-centric tools are generally implemented using
analytic or queuing theory modeling techniques and
process performance and configuration data collected
from existing running systems.

4.2 General Purpose
General purpose means that the tool contains the

features to allow the user to model anything they
would like to build, but with little or no “built-in” under-
standing of any given platform. These tools are used
to model more than just the hardware, but also such
things as the design of an application, traffic flows and
communications networks. Using the example above,
the model builder would have to understand the design
of the IBM 9021-982, how the eight processors com-
municate, and what is involved in completing a unit of
work within the operating system. A platform-centric
tool might contain a variable for the delay caused by
dispatching a task on a different processor and set the
value of that variable when the model starts based on
the system vendor and model, the operating system
version and type, and the current configuration (such
as memory). The modeler using a general purpose
tool would be required to either build a sub-model to
simulate the underlying architecture or to determine a
delay value to use whenever the event happened.
Simulation of the architecture is much more accurate
but also much more difficult and time consuming.

Although many general purpose tools provide li-
braries of sub-models for a variety of systems and
devices, most do not provide the required level of
granularity, being either too general or too detailed for
the situation. Modification of these submodels, if al-
lowed by the vendor, can be time and effort intensive.
Building the relationships between the submodels is
part of the overall model construction and may require
an in-depth understanding of all of the submodels
used. General purpose tools are generally imple-
mented using simulation modeling techniques.

5. Simalytic Enterprise Modeling
Simalytic Modeling is a hybrid modeling technique

based on the hypothesis that it is possible to develop a
modeling methodology using a general purpose simu-

lation modeling tool as a underlying framework and an
analytic modeling tool (or the results thereof) to repre-
sent individual nodes or systems when predicting the
capacity requirements of heterogeneous computer
systems in an enterprise level model.

There are two key differences between the exist-
ing modeling tools and the Simalytic Modeling Tech-
nique. The first is the ability to use the results from
not only a different tool, but a different modeling tech-
nique altogether, as a submodel within an enterprise
model. The second is the ability to use the results
from tools or techniques already being used to model
individual nodes in the system. These differences re-
duce the time and effort to build an enterprise level
model by using the results from commercially available
platform-centric tools or existing detailed application
models.

5.1 Methodology
Simalytic Modeling brings together existing per-

formance models and application information. It is not
a technique for collecting data or measuring systems
or applications. There are several underlying assump-
tions that must be true before the Simalytic Enterprise
Modeling technique can be used:

• The applications to be modeled at the enterprise
level must be understood at the enterprise level,
which includes transaction arrival distributions.

• A valid model must exist for each system or node in
the enterprise model.

• The simulation tool selected for the enterprise
model framework must support submodels and
must be able to invoke external functions.

The model builder must already understand the
applications and the individual systems in the enter-
prise before they can be put together into an enter-
prise level model. Using the example from section
2.1.4 Client/Server Environment, the relationship
between the Order Entry transactions and the Ship-
ping system must be understood and measurable. If
the model builder does not have any information about
which transactions send requests to the Shipping
system, he cannot build a model that matches the
application. Once the application is understood, the
model builder must know how each system reacts to
different transaction loads. How this information is
developed will vary across the different nodes depend-
ing on particulars such as the hardware, the operating
system and the level of data collection. Techniques
for developing a lookup table of valid response time
predictions for each node include collecting measure-
ment data at different transaction rates; using plat-
form-centric modeling tools or calculating expected
response times based on benchmarks. The fully im-

Simalytic Enterprise Modeling  1996 Tim R. Norton .pdf 8 CMG96 Session 526 - December 12, 1996

plemented Simalytic Model would integrate a platform-
centric queuing theory model into the simulation tool
by replacing the submodels for individual systems with
calls to the queuing theory tool.

Once the model builder has all of the fundamental
information she can construct an enterprise level
model. The simplest way to do this is to construct a
very high level simulation model of the enterprise,
where each system is a single server capable of some
amount of parallelism defined by the architecture of
each system and of the application. Then, instead of
using a pre-defined service time, each server would
use a look-up table that maps the transaction arrival
rates to service times. In the enterprise model the
service time and the response time for each server will
be the same because the queue time is accounted for
in the response time data for the server. Each node in
the simulation model must allow enough parallelism to
avoid queuing to enter the node.

Continuing with the same example, some number
of the Order Entry transactions would be routed to the
Shipping server. Assume it has been determined that
Shipping can provide a response time of one second
when arrivals are less than three per minute and a
response time of two seconds when arrivals are more
than three per minute. When the Order Entry transac-
tion rate increases such that more than three per mi-
nute are sent to Shipping, the response time will jump
from one to two seconds. This is a very simple ex-
ample, but it illustrates the point. The increased serv-
ice time at Shipping will cause the overall response
time for those transactions to increase, which will be
seen as a longer average response time or reduced
through-put for the application.

Figure 5 Simple Enterprise Model shows a dia-
gram of this model. The response time is measured
from Arrivals to Departures, either through the Ship-
ping node or around it. If there is a limit on the num-
ber of transactions that can be active in the Order
Entry system at any given time, then there could be
some queuing to get into the system. This would rep-
resent a user’s workstation waiting to send the trans-

action to the server. This example shows how the
Simalytic Model connects what is happening in the
application on the different servers. If the Order Entry
system is modeled by itself, the workload representing
the long (Shipping) transactions would not reflect the
increased response time due to the load at Shipping.
Because of the additional application information in the
Simalytic Model, it could adjust the service time in the
Order Entry server by replacing the measured wait
time component of the response time with the pro-
jected delay from the Shipping server. This is a level
of detail beyond the initial discussion of Simple Enter-
prise Modeling in this paper, but technique lends itself
to this type of extension.

The next question is “how does the Shipping
server know what arrival rate to use for a single trans-
action?” The arrival rate must be calculated for each
transaction based on how long it has been since the
prior transaction (the transaction interarrival time). If
the interarrival time is less than 20 seconds, then the
arrival rate to account for that interarrival time would
have to be greater than three per minute. If the inter-
arrival time is longer than 20 seconds, then the arrival
rate would have to be less than three per second.
Therefore, knowing the interarrival time between each
pair of transactions, the model can calculate the in-
stantaneous arrival rate at each server. As shown in
Figure 6 Shipping Transaction Arrivals, when the
transaction arrivals are close together the response
time is high and when the arrivals are further apart the
response time is low.

The next step is to analyze the model using the
business objectives. Assume that the manager of the
Order Entry department has requested a model to
determine when the Order Entry system will need to
be upgraded in order to maintain the required re-
sponse time of less than 1.7 seconds. The arrival rate
is assumed to have a constant increase over the next
18 months (the scope of the analysis) and the percent

Arrivals

Departures

Order Entry

1 sec

Shipping

1 sec if < 3 / min
2 sec if > 3 / min

Figure 5 Simple Enterprise Model

0.0

1.0

2.0

0 50 100 150 200 250

Relative Arrival Time (Seconds)

R
es

p
o

n
se

 T
im

e

Transactions

Figure 6 Shipping Transaction Arrivals

Simalytic Enterprise Modeling  1996 Tim R. Norton .pdf 9 CMG96 Session 526 - December 12, 1996

of the Order Entry transactions must also query the
Shipping system is assumed to be 30%. The re-
sponse time goal for the Shipping system is less than
10 Seconds (because these transactions generally do
not involve a waiting customer) and this response time
is acceptable. The objectives of the analysis are to
answer two questions: “When does the Order Entry
system fail to meet the business response time goal?”
and “What will fix the problem?”.

Figure 7 Model Results Analysis shows the hy-
pothetical results of this example model. When each
of the systems are analyzed independently, neither of
the response times ever approach the business goal
of 10 seconds for the Shipping transactions and 1.7
seconds for the Order Entry transactions. However,
when the relationship between Shipping and Order
Entry is added to the chart in the form of results from a
Simalytic Model, the revised Order Entry response
times show that system will need to be upgraded by
year end, well within the scope of the analysis. In
addition, the ‘fix’ to the problem is to upgrade the
Shipping system, which never exceeds its response
time goal. The Simalytic Model allows the analyst to
see the impact of relationships that, although known,

may not be full appreciated.

5.2 Foundation
The above example shows how

simulation and analytic modeling
techniques can work together, but it
does not prove that Simalytic Model-
ing is a viable technique. To do that
we need to look at the mathematical
formulae behind the two techniques
and how they are combined into the
Simalytic Modeling formula shown in
Equation 3 Simalytic Response Time
Formula. As the framework for a Si-
malytic model is a simulation model,
we start with the simulation response
time formula shown in Equation 2.
The server time from each iteration

(Ti) is replaced with a function f (λi), where i is the it-
eration and λ is the arrival rate per second calculated
from the interarrival time by dividing the number of
simulation clock ticks per second (b) by the difference
in the simulation clock value for the current iteration
and the prior iteration (ci - ci-1) as shown in Equation 3.

The function f is based on the results of the
analytic response time formula in Equation 1, either
directly or indirectly. Directly means that the simulation
modeling tool would invoke a submodel to calculate
and return the response time based on λ. Indirectly
means that the analytic formula has been invoked at

some other time for some subset of the expected val-
ues for λ and the response times placed in a look-up
table. The simulation model then invokes a submodel
that returns the response time for the closest λ found
in the table.

Figure 8 Interarrival Time Example shows an
example of how the arrival rate can be calculated from
the interarrival times between transactions. The i th

Equation 3 Simalytic Response Time Formula

T
f

n

b
c c

ii

n

t

i
i i

t

=

=
−

=

−

∑ ()λ

λ

λ

1

1

where = arrivals per second as:

where c = simulation clock value
and b = simulation clock ticks per second

Model Results Analysis

0.0

0.5

1.0

1.5

2.0

2.5
1/

1/
96

1/
29

/9
6

2/
26

/9
6

3/
25

/9
6

4/
22

/9
6

5/
20

/9
6

6/
17

/9
6

7/
15

/9
6

8/
12

/9
6

9/
9/

96

10
/7

/9
6

11
/4

/9
6

12
/2

/9
6

12
/3

0/
96

1/
27

/9
7

2/
24

/9
7

3/
24

/9
7

4/
21

/9
7

5/
19

/9
7

6/
16

/9
7

7/
14

/9
7

Date

R
es

p
o

n
se

 T
im

e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

A
rr

iv
al

 R
at

e
(T

ra
n

sa
ct

io
n

s
p

er
 S

ec
o

n
d

)

Order Entry

Shipping

OE RT Goal

3/min Arrival Rate

OE with S info

Arrival Rate

Figure 7 Model Results Analysis

j-4 j-3 j-2 j-1 j j+2 j+2 j+3
Simulation Clock (cj)

t i-1

t i+1

t iir i

ir i+1

a i-1 d i-1

a i

a i+1

d i

t=transaction, a=arrival, d=departure, ir=interarrival time

Figure 8 Interarrival Time Example

Simalytic Enterprise Modeling  1996 Tim R. Norton .pdf 10 CMG96 Session 526 - December 12, 1996

transaction (ti) arrives at the clock value of cj, but as it
is the clock value for the i th transaction, it is also re-
ferred to as ci. The arrival of the prior transaction (ti-1)
is at ci-1 (or cj-3). Therefore, the interarrival time for ti is
iri, which starts at the prior arrival (ai-1) and is calcu-
lated as the clock value at ai (ci ≡ cj) minus the clock
value at ai-1 (ci-1 ≡ cj-3) which is three. If there are six
clock ticks per second, then 6/3 = 2, or an arrival rate
of two transactions per second.

Once the arrival rate is calculated, the function (f)
is called with the rate for that transaction (λI). The
function will approximate the results of the queuing
theory formula Equation 1 Analytic Response Time
Formula to a
greater or lesser
degree, depend-
ing on the com-
plexity designed
into f. Figure 9
Simalytic Func-
tion shows a
stylized view of
the relationship
between this
function (the short
broken line) and
the results of
Equation 1 (the
solid line) and the
results a of series of simulations at different arrival
rates (the long broken line).

Equation 3 only calculates the response time for
a single workload on a single server. The response
times for additional workloads and servers would be
calculated the same way. The average system re-
sponse time could then be calculated by adding the
response times together based on the probability of
each workload visiting each server. As can be seen
by this simple example, the calculations will quickly
grow out of hand. To avoid this, the Simalytic Model-
ing Technique uses existing simulation and queuing
theory tools together to implement a Simalytic Model.
In addition, the simulation tools allow transactions to
be assigned attributes that can contain application de-
sign information not available in the measurement
data.

5.3 Validation
Simalytic Enterprise Models should be validated

at two levels. First, each model used for a system or
node in the enterprise must be validated and cali-
brated for that system. This not only means that the
response time versus load (arrival rate) relationship is
valid for all arrival rates seen, but that it also holds
across all of the possible arrival rates for all workloads

likely to be generated by the enterprise model. If a
submodel does not accurately represent the “knee” in
the response time curve of one of the systems, such
as the one in Figure 9, the enterprise model will not
accurately predict beyond that point. Second, be-
cause Simalytic Enterprise Modeling includes a model
of the relationships within the applications being mod-
eled, measurement data must be collected to validate
those relationships. If the model from above (see
Figure 7) shows 30% of the Order Entry transactions
are routed to Shipping, the model builder must collect
the data to support that assumption.

Neither of these validation issues is easy. The
first requires more effort than just modeling individual
systems because each system can influence the oth-
ers. Other workloads on any of the systems can im-
pact the applications being modeled. One system can
host more than one application being modeled at the
enterprise level, which would require the submodels to
have information about both to calculate the response
time for either. The second issue requires a level of
understanding and documentation of both the systems
and the applications that many organizations simply do
not have available. Most applications do not collect
information about execution paths, spawned transac-
tions and client/server requests. In addition, many of
the client/server operating systems and OLTP sys-
tems today do not collect enough, or sometime even
any, detailed information about the transactions.

Simalytic Enterprise Model validation will require
more time and effort than the validation of single sys-
tem models. Until better cross-platform application
measurement tools are in place, the most promising
validation technique appears to be the ‘model the past
to predict the present’ approach. Simply stated, this
technique is applied after all other issues are thought
to be resolved. A model is built from measurement
data collected from a different enterprise environment,
usually at a lower transaction volume. Growth is then
applied to the model to see if it predicts what can be
currently measured. If it can, then there is a good
confidence in the predictions of the future. If it cannot,
the model must be revised. Until measurement data
improves, many situations will require the modeled
changes to be implemented and measured before they
can be validated. This is a classic “Catch-22” situa-
tion. Why collect the data when we cannot do any-
thing with it and why build a tool that requires non-
existent data? Simalytic Modeling provides a tech-
nique to use the existing data with the existing tools
and refine the process as each improves.

5.4 Application
A practical implementation of the Simalytic Enter-

prise Modeling technique is to develop an interface
between existing general purpose simulation tools

Queuing Theory
Simalytic Function
Simulation

Arrival Rate

R
es

po
ns

e
Ti

m
e

Figure 9 Simalytic Function

Simalytic Enterprise Modeling  1996 Tim R. Norton .pdf 11 CMG96 Session 526 - December 12, 1996

such as SES/Workbench (SES), Qase (AST), Pro-
Sim (MSI), ProModel (ProModel) or Simul8 (Visual)
with existing platform-centric queuing theory tools
such as Best/1 (BGS), OptiModel (CA-Legent),
CMF/MODEL (B&B) or ATHENE (MSI). In addition,
other tools could be used in place of the platform-
centric analytic submodels, including design engineer-
ing models such as SPE*ED (PES ; Smith 1995) and
general analytic tools such as QSolver/1 (Menascé,
Almeida, and Dowdy 1994). This partial list of tools is
not intended to include all tools that could be used with
this technique. This list represents some of the tools
the author has had some level of experience with and
believes should be usable in building an Simalytic En-
terprise Model. Both the list of simulation tools and
the list of analytic tools is large enough to show that
the Simalytic Enterprise Modeling technique is a gen-
eral methodology with broad application and not a
specialized implementation of a single tool.

6. Conclusion
Capacity planning for single platform computer

systems has developed over the years into a well dis-
ciplined field, but only if the input parameters and
goals are well defined. Predicting the resource re-
quirements in a client/server environment is possible,
but again, only if the input parameters and goals are
well defined. Applications designed to exploit a cli-
ent/server architecture greatly increase the complexity
of both the computer system configurations and the
applications themselves. Predicting the responsive-
ness of those more complex applications requires a
more complex modeling methodology.

Modeling an application at the enterprise level re-
quires an understanding of the applications and meas-
urements of the transaction response times. Different
modeling techniques (simulation, analytic queuing the-
ory or hybrid) and different modeling tools (platform-
centric or general purpose) can be used to predict
transaction response times for individual systems or
nodes. But none of these can be used alone to pro-
duce a detailed enterprise level model at a reasonable
development cost. The expense, time and effort to
plan the required future capacity of a system must be
substantially less than the cost that is being avoided.
It has been possible to devote a great deal of time,
effort and money to capacity planning in the main-
frame arena because the equipment costs to be
avoided were so very large. The lower equipment
costs and scarcity of experienced planners in the dis-
tributed environments have often made the cost to be
avoided less than the cost of planning. Unfortunately,
both of these situations are changing as mainframe
equipment costs spiral down and client/server com-
plexities push the enterprise costs up. The cost to be
avoided may still be too small to justify the effort, but

the key is finding where the real problem is. Adding
equipment that fixes several non-problems quickly
changes the equation in favor of effective capacity
planning.

Simalytic Enterprise Modeling can be used to
take advantage of existing application and system
models to reduce the time and effort to produce de-
tailed enterprise level models. Although the method-
ology is still being developed, the technique described
in this paper can be used very cost-effectively at a
high level, such as shown in Figure 7 Model Results
Analysis. This level of analysis, although not very
precise, provides insight into the application’s future
performance that would not otherwise be available.
Using the technique will both improve the understand-
ing of the application as well as identify which systems
require more detailed analysis and which systems will
continue to meet the business needs without additional
equipment. The implementation of the technique us-
ing any of the many existing tools not only protects the
investment an organization has made in tool acquisi-
tion and training, but it also will reduce the time and
effort to produce a model that will predict the impact of
business growth on the entire enterprise.

7. Acknowledgments
The author would like to thank the referees and

editor for their careful reading and helpful comments.
A special thanks is expressed to Dr. Jeff Buzen and
Mr. Rick Lebsack for their interest and in-depth cri-
tiques of the early versions. A special thanks is also
expressed to Dr. John Zingg, Dissertation Committee
Chair, for his insight and assistance.

8. References

AST. QASE . Advanced System Technologies, 12200 E.
Briarwood Ave., Suite 260, Englewood, CO 80112.

B&B. CMF/MODEL . Boole & Babbage, Inc., 510 Oakmead
Parkway, Sunnyvale, CA 94086.

BGS. Best/1 and Crystal . BGS Systems, Inc., 128 Tech-
nology Center, Waltham, MA 02254.

BGS. 1996. UNIX Client Server Sizing and Performance:
BGS Systems, Inc. White Paper.

Buzen, Jeffrey P. 1984. A Simple Model of Transaction
Processing. CMG Proceedings,: 835-839: Computer
Measurement Group.

CA-Legent. OptiModel . Legent Corporation, PO Box 9345,
Framington, MA 01701.

Domanski, Bernard. 1995. Capacity Management for Cli-
ent-Server Architectures: Techniques & Systems
Management Issues. CMG Proceedings: Computer
Measurement Group.

Ghosh, Deb, Ishwar Murthy, and Allen Moffett. 1992. File
Allocation Problem: Comparison of Models with Worst

Simalytic Enterprise Modeling  1996 Tim R. Norton .pdf 12 CMG96 Session 526 - December 12, 1996

Case and Average Communication Delays. Operations
Research 40 (6): 1074-1085.

Gunther, Neil J. 1995. Performance Analysis and Capacity
Planning for Datacenter Parallelism. CMG Proceed-
ings: Computer Measurement Group.

Hatheson, Amanda. 1995. Two Unix Client/Server Capacity
Planning Case Studies. CMG British Proceedings:
Computer Measurement Group.

Kobayashi, Hisashi. 1981. Modeling and Analysis: An In-
troduction to System Performance Evaluation Method-
ology. The Systems Programming Series. Reading,
MA: Addison-Wesley Publishing Company.

Lehmann, Axel. 1984. A Multi-stage Hierarchical Perform-
ance Evaluation Concept - Design, Application and
Experiences. CMG Proceedings: Computer Measure-
ment Group.

Menascé, D., V. Almeida, and L. Dowdy. 1994. Capacity
Planning and Performance Modeling: from mainframes
to client-server systems. Englewood Cliffs, New Jer-
sey: Prentice Hall.

MSI. Pro-Sim and ATHENE . Metron Systems Inc., 352
Hungerford Dr., Suite 400, Rockville, MD 20850.

PES. SPE-ED . Performance Engineering Services, P.O.
box 2640, Santa Fe, NM 87504.

Place, Jerry P. 1986. A Capacity Planning Model Relating
the Degree of Multiprogramming, Page Fault Rate and
CPU Utilization in a Large Computing System. CMG
Proceedings: Computer Measurement Group.

Pooley, Rob. 1995. Performance Analysis Tools in Europe.
Informationstechnik und Technische Informatik 37 : 10-
16.

ProModel. ProModel . ProModel Corp., Orem, UT (801)
223-4600.

Rosenberg, Jerry L. and Ellen M. Friedman. 1984. Capacity
Planning in a Decentralized Environment. CMG Pro-
ceedings,: 422-424: Computer Measurement Group.

SES. SES Workbench . Scientific and Engineering Soft-
ware, Inc, 4301 West Bank Dr. Blgg A, Austin, TX
78746.

Smith, Connie U. 1995. The Evolution of Performance
Analysis Tools. Informationstechnik und Technische
Informatik 37 : 17-20.

Taylor, David J. 1994. Hybrid modeling: The next step.
Computer-aided Engineering 13 (7): 32-35.

Visual. Simul8 . Visual Thinking International Limited, 141
St James Rd., Glasgow, UK G4 0LT.

Wicks, Ray. 1989. Balanced Systems. CMG Transactions:
Computer Measurement Group.

Wilson, Gregory L. 1994. Capacity planning in a high-
growth organization. CMG Proceedings. Orlando, FL:
Computer Measurement Group.

